A UML-Based Design Environment for Interactive Applications

Paulo Pinheiro da Silva and Norman W. Paton

Department of Computer Science, University of Manchester
Oxford Road, Manchester M13 9PL, England, UK.
e-mail: {pinheirp,norm}@cs.man.ac.uk

Abstract

The Unified Modeling Language (UML) can be used
for modelling both the structure and behaviour of soft-
ware applications. However, although UML supports
many different modelling notations, minimal support
is provided for user interface (UI) design. The Uni-
fied Modeling Language for Interactive Applications
(UML3) is an extension of UML that provides sup-
port for UI design. UMLi has a user interface dia-
gram for modelling abstract UI presentations and an
extended activity diagram that provides constructors for
modelling common UI behaviours. This paper presents
the support provided for UI design by the UMLi design
environment. Designers can use the environment to
model applications and their Uls using UML and its
extensions in UMLi. The tool provides facilities for
modelling interaction objects, and the collaboration of
these interaction objects with domain objects.

1 Introduction

UML [4] has quickly become established as the prin-
cipal object modelling language, and as an official stan-
dard, benefits from the endorsement of the OMG [15].
However, although UML can be seen as quite a com-
prehensive modelling language, with many interrelated
diagrams for describing the structure and behaviour of
an application at different levels of abstraction, very
little attention has been paid to the needs of user in-
terface designers in UML. As a result, attempts to de-
velop user interfaces in UML tend to come up against
modelling challenges that are a barrier to the natural
expression of interface features [12, 7, 17].

The need for effective, abstract modelling facilities
for user interfaces has long been recognised [14, 3],
and a research community has been working on user
interface management systems [11] and model-based

user interface development environments (MB-UIDEs)
[21, 6] for over 10 years. However, although this re-
search activity has identified effective techniques for
modelling tasks and dialogue, interface design meth-
ods have generally been poorly integrated with other
aspects of application design, and there are few widely
accepted models or notations.

The aim of the UMLi project is to investigate tech-
niques for easing the design of user interfaces in UML.
A case study in the use of standard UML for mod-
elling user interface applications [7] revealed various
problems describing user interface functionalities using
the existing facilities of UML. This has given rise to
the design of some minimal extensions to UML, col-
lectively known as UML4, that are specifically targeted
at the needs of user interface modellers [8]. The em-
phasis in UML4 is on supporting the development of
form-based interactive interfaces to applications mod-
elled using the existing facilities of UML. Indeed, most
data intensive interactive systems are based on forms,
e.g., database applications and web applications [25].

However, fully as important as the identification of
appropriate modelling facilities is the development of
effective environments in which to develop the mod-
els. Several tools have been developed for creating and
managing UML models (e.g., [19, 20, 23]), and MB-
UIDEs are themselves often associated with interac-
tive model development tools (e.g., [1, 2, 13, 18, 22]).
The focus of this paper is on the development of a
modelling environment for UMLi. As UMLi is an ex-
tension of UML, most application development within
UML: uses the existing facilities of UML. As such, it
seems natural to develop a tool for UML4 as an exten-
sion of an existing development environment for UML,
and in fact the UML{ environment is an extension of
ARGO [20].

This paper demonstrates that a UMLi-based tool
can provide a design environment:



e where user interfaces and their mainstream appli-
cations can be modelled in an integrated way;

e that facilitates the design of activity diagrams that
are simultaneously supported by interaction and
domain objects.

Therefore, the implementation of the features of
UML; in a tool can anticipate in the design the need to
specify very precisely the relationship between interac-
tion and domain objects. In the absence of such sup-
port, this integration is often a costly task performed
in the implementation.

This paper has the following structure. An overview
of UMLi is provided in Section 2. Generic aspects of
the UML;: tool are presented in Section 3. Tool sup-
port for the modelling of UI presentations is described
in Section 4. Tool support for modelling interactive ap-
plication control-flow and data-flow using activity dia-
grams is presented in Sections 5 and 6. Tool support
for modelling the collaboration between interaction and
domain objects is presented in Section 7. Conclusions
are presented in Section 8. Throughout the paper,
some familiarity with UML notation and terminology
is assumed.

2 TUMLi Overview

The features of UML3 are illustrated in this paper
through the description of the models used for specify-
ing the ConnectUT user interface presented in Figure 1.
This user interface is where system users provide their
login name and password to gain access to system’s ser-
vices. This is a rudimentary example, but it suffices to
illustrates the UML4 modelling environment. A more
substantial UML4 model is presented in [8].

A UML: model describing structural aspects of
ConnectUI is presented in Section 2.1, and a UML4
model describing dynamic aspects of ConnectUI is
given in Section 2.2. Further details of the UML3
can be obtained in [8] and in the UMLi home-page
at http://img.cs.man.ac.uk/umli, from which the
modelling environment described in this paper can be
downloaded.

2.1 Modeling User Interface Presentations

UML provides class and object diagrams for mod-
elling structural aspects of software. The use of these
diagrams for UI design presents some difficulties. For
instance, the identification of interaction object roles
and containments may not be easy in object dia-
grams [7].

EE;’; Library System | [O] x|
Lagin:
Password:

&I Cancel |

Figure 1. The ConnectUI user interface of a
librar y system.

The user interface diagram in Figure 2 is an abstract
presentation model of the ConnectUI. The Ul diagram
constructors are specialised UML classes called Inter-
actionObjects. Thus, a Ul diagram is a specialisation of
a class diagram. The UI diagram in Figure 2 provides
examples of most of the InteractionObjects specified
in UML4. An Inputter, V, is responsible for receiving
information from users. A Displayer, /\, is responsi-
ble for sending visual information to users. An Edi-
tor, ¢, is simultaneously an Inputter and a Displayer.
An ActionInvoker, >, is responsible for invoking an
object operation or raising an event. A Container,
i::':’, is an InteractionObject that can contains other In-
teractionObjects. A FreeContainer, , is a top-level
Container that cannot be contained by any other Con-
tainer. Inputters, Displayers, Editors and ActionInvok-
ers are PrimitivelnteractionObjects.

e ConnectUI ’ :
e |’ |
_______ L

_______________
cITTTTIT . e .- -ZF ' !

— -

------- A |
- L
L
L
L
L
oy
L
l

-— .

Figure 2. A user interface diagram describing
structural aspects of the ConnectUL

The problems relating to the description of group-
ings and roles using class diagrams are addressed in the
UI diagrams: both the role and the grouping of inter-
action objects is depicted graphically. For example, we
can see that the passwordText Inputter is contained
by the ConnectUI FreeContainer in Figure 2. Further,



/ Connect \
4 GetlserDetails R A —— _i
; <<presents == 1
<< B .
A UserQuery setLogin{getValue()) j<_____1_n_t_eg§5£s____ loginText ConnectTT] i
i
<) o s [
serQuery.setPassword(getValueO%————IPE@EES ————— V passwordText
. v <=cancels®> [:>
T UserQuery
T Cancel
TeerCuery. CheckUzer() . s<activates>> [:>
\ OK /

Figure 3. An extended activity diagram describing behavioural aspects of the ConnectUL

loginText and passwordText play the same abstract
role as Inputters.

2.2 Modeling User Interface Behaviours

The activity diagram in Figure 3 is a description
of the behaviour of the ConnectUI. Broadly speaking,
activities describe the actions that can be performed
using the UL The transitions describe the possible ways
of executing activities. Further, object flows specify
how objects are used by actions in activities.

UML: provides stereotyped interaction object flows
to describe behaviours that are often performed in
Uls. For example, the < presents>> interaction ob-
ject flow in Figure 3 specifies that the ConnectUI
FreeContainer and its contained interaction objects
are presented when the Connect activity is enabled,
and that they are hidden when the Connect activ-
ity is disabled. Further, the <interacts>> interac-
tion object flow in Figure 3 specifies that users can
interact with the passwordText Inputter when the
UserQuery.setPassword(getValue()) ActionState is
enabled. UMLi specifies three other stereotypes for in-
teraction object flows in addition to the < presents>
and <interacts>> stereotypes: the < cancels>> stereo-
type for cancelling the execution of an activity, the
L confirms> stereotype for confirming the end of op-
tional decisions, and the < activates>> stereotype for
triggering the execution of ActionStates.

The introduction of SelectionStates is another con-
tribution of UML{ for modelling Uls. For instance, the
OrderIndependentState, @, in Figure 3 specifies that
its two selectable states, in this case, the two Action-
States connected to the OrderIndependentState by Re-
turnTransitions, <—>, must be executed once each, but
may be carried out in any order. UML3 specifies two
other categories of SelectionState not used in Figure 3:

OptionalState and RepeatableState.

Activity diagrams without object flows can be con-
sidered as control-flow models. Indeed, a description of
the possible transitions between activities models the
application workflow. Activity diagrams with object
flows also model collaborations between objects. In
this case, these activity diagrams can be considered as
data-flow models. The distinction between control-flow
and data-flow models is not normally relevant, since
both of them are typically required during a UI de-
sign. However, the distinction is emphasised here be-
cause the UML: tool has distinct facilities for modelling
control-flow and data-flow. The facilities of UMLj for
control-flow modelling are discussed in Section 5, and
those for data-flow modelling are discussed in Section 6.

3 Implementing the UML: Tool

There are many computer-aided software engineer-
ing (CASE) tools for UML, e.g. Rational Rose [19],
Together [23] and ARGOJ[20]. This section explains
how the features of UML{ have been implemented in
ARGO [20].

3.1 ARGO Overview

There are two characteristics of ARGO that have
guided our decision to build on this specific UML tool:

e ARGO is open source software. Thus, we may
have the chance to implement the features of
UML: without relying on the sometimes limited
extension mechanisms occasionally provided by
other UML-based tools.

e The ARGO object model used for handling UML
models at runtime conforms with the OMG UML
1.3 specification [15].



Eg_;ahlgofUHL - Connect? argo

File Edit Miew Create Arrange Generation Critique  Help

I [=] E3

| Dizagram-centric - |

JEIRENEATY

f} | | |:| || D ||O || \ ||A ||Q||S||a| User Interface Diagram: Ul diagram 1

Lo @ class diagram 1
[o ] use case diagram 1 r
Lo activity diagram 1
o] @ Ul diagram 4

Q’_\ Connectl]

E} fanon Container)

» Cancel

[ oK

f} (anon Container)
Y pasamordT et
& F azaord

V loginT ext

v Login

VoA

Login Pazzword
LI =

n login Tt

B passwordText

[4]

1]

[*]

l A= Diagrar |25 EEE

| By Priarity - E 91 tems -

rd ToDokerm |/,L Properties r; Style |/,l Javadocs |/1 Source |/A Constraints |/1 Taggedvaluss |/1 izl iz |

|j High LN | ogin Tt Irplements:
@ [ tedium i sibility: -
& Ij Low Keywords: none 7
Extends: -
Sterectype: b
Hamespace: |untitlzdhModel -

Figure 4. A snapshot of the ARGO user interface .

The ARGO user interface is shown in Figure 4,

where there are four distinct panels:

e FEditing panel. This panel is located at the top
right of Figure 4, and is where UMLj diagrams
are constructed. This panel is composed of the
working area and the selection box. The selection
box is used for selecting a constructor creator or an
operator. Constructor creators are used for adding
new components to the working area. Operators
are used for modifying constructors already cre-
ated in the working area. The contents of the se-
lection box, in terms of constructor creators and
operators, depends on the kind of diagram that is
being edited. For instance, the selection box in
Figure 4 contains the constructor creators for Ul
diagrams, since this is the kind of diagram being
edited.

e Navigation panel. This panel is located at the top
left of Figure 4. From this panel designers can
navigate through the entire UML model, switching
from one diagram or diagram element to another.

For instance, by selecting a new diagram in the
navigation panel a designer can set the selected
diagram as the current one in the editing panel.

Detail panel. This panel is located at the bottom
right of Figure 4. In this panel designers can inter-
act with elements of the UML model and ARGO
environment that may not be represented graphi-
cally in the editing panel. Different kinds of infor-
mation can be specified in this panel. A different
form is provided for each kind of information that
can be specified. These forms are selected using
the detail panel tabs, i.e. ToDoItem, Properties
and Style, as shown in Figure 4. In the case of
UMLi, we are particularly interested in the proper-
ties form, where designers can provide additional
information for UMLi constructors. The content
of the properties form is based on the selected com-
ponent of the current diagram, if any. For exam-
ple, the properties form in Figure 4 shows details
about the selected loginText Inputter. If no com-
ponent is selected, the property panel displays the
property of the current diagram.



e To Do panel. This panel is located at the bottom
left of Figure 4. Design critics provided by ARGO
are presented in this panel. This is a possible place
for implementing some constraints specified in the
UML: model. Indeed, rather than enforcing the
construction of consistent UML models from the
beginning, ARGO provides non-compulsory criti-
cism facilities that may provide guidance for build-
ing consistent models in an incremental way. The
version of ARGO that implements the UMLj ex-
tensions, v.0.8.1, does not make use of the ARGO
criticism facilities.

From this description of the ARGO user interface we
can see that UML+‘ models are built in the editing panel.
Moreover, detailed information concerning the models
is normally provided in the property form. Therefore,
UML; features are mainly based on extended function-
alities implemented in the editing panel and property
form.

3.2 Implementing ARGO:

The version of ARGO that provides the UML facil-
ities is called ARGOi. A high-level description of the
ARGO architecture is required to explain the imple-
mentation of ARGOi. The components of ARGO are
presented in Figure 5. There, the packages are com-
posed of Java/Swing classes that may have their own
sub-packages. These packages have the following roles
in ARGO.

[ 1] 1]
GEF #ML Parser
A R
|
; MELIML
A
ARGO

Figure 5. A top-level package view of the
ARGO architecture .

e The Graph Editing Framework (GEF) package
provides a generic set of graphical constructors for
implementing diagrams, nodes and edges.

e The Novosoft UML (NSUML) package implements
the UML object model. Additionally, the package

provides the facility of saving and loading UML
object models in the OMG XML metadata inter-
change (XMI) format [15].

e An XML parser package is used by NSUML classes
for loading object models from XMI files.

e The ARGO package is composed of extend GEF
classes. These ARGO classes provide editable
graphical representations for the NSUML objects.
Moreover, they are the graphical elements used in
the editing panel.

The UML¢ implementation has extended classes in
the ARGO and the NSUML packages described above.
The ARGO package has been extended to provide the
following facilities for modelling UML¢ diagrams.

e Editing facilities for user interface diagrams, as
discussed in Section 4;

¢ Editing facilities in activity diagrams for modelling
selection states, initial interaction states and inter-
action object flows, as in Sections 5 and 6;

e Wizards in activity diagrams for designing control-
flow, as discussed in Section 5;

e Wizards in activity diagrams for modelling inter-
action object flows, as discussed in Section 6.

The NSUML package has been extended to support
the UML¢ metamodel [5]. The NSUML package has
also been extended to support the generation and read-
ing of UML; XMI document type definition (DTD)
conformant files [15]. This part of the implementa-
tion benefits significantly from the principle adopted
in UML3 of extending, but not modifying, the UML
specification. Every XML file that conforms with the
UML XMI DTD also conforms with the UMLs XMI
DTD.

At this point, we can recall that one of the difficulties
of using existing MB-UIDE:s is that each development
environment uses a different set of notations for mod-
elling Uls [6]. This means that UI models built by one
MB-UIDE cannot be used by another one due to the
intrinsic difficulty of translating models built over dif-
ferent notations. For instance, MASTERMIND [22],
JANTUS [1], Teallach [2] and MOBI-D [18] cannot in-
terchange their models, even partially. With the use of
XMI files, UML-based tools can interchange models. It
is even expected that UML-based tools can eventually
share models in a collaborative and distributed devel-
opment environment. In terms of UML¢, this model
interchange ability means that UML¢based tools can
use, without any translation, partial UML models of



interactive applications, even when these have been de-
veloped using another environment.

4 Presentation Modelling Support

A snapshot of the ARGOji user interface when mod-
elling a Ul diagram is presented in Figure 4, which
shows the modelling of the ConnectUI diagram from
Figure 2. The implementation techniques used in this
UMLi-specific diagram are the same as for other UML
diagrams. For instance, the same technique is used for
implementing interaction object containment in UT di-
agrams and state containment in statechart diagrams.
In this section, we present the specifics of UI diagram
editors, rather than generic implementation details of
ARGO.

The decision about the content of each diagram is
one of the first problems facing the implementor of a Ul
diagram editor. In fact, the diagram concept is not ex-
plicitly specified in UML. For instance, the classes of an
application can be modelled in a single class diagram or
in several class diagrams. In ARGO¢, a UI diagram has
exactly one FreeContainer. Indeed, a FreeContainer is
automatically created when its UI diagram is created,
and a Ul diagram is deleted when its FreeContainer
is deleted. For this reason, there is no FreeContainer
creator in the selection box of the UI diagram editor,
as we can see in Figure 4.

The decision that a UI diagram should contain ex-
actly one FreeContainer may facilitate the selection
of a FreeContainer in large-scale models. Indeed,
navigation panels in UML-tools are usually organised
around diagrams. Thus, FreeContainers can be se-
lected through the selection of their Ul diagrams in
navigation panels. Otherwise, a search facility would
be required to locate the Ul diagram of a specific
FreeContainer.

Interaction objects that are not FreeContainers are
added to a UI diagram using one of the constructor
creators in the selection box. Interaction object con-
tainment is initially specified by the position of the cur-
sor on the working area of the editing panel when the
pointer-device button is pressed. Thus, interaction ob-
jects are added into the innermost Container related
to the selected position. Designers can modify inter-
action object containment by dragging and dropping
interaction objects.

Interaction object placement (in contrast with con-
tainment) is not relevant in UI diagrams, since layout
is normally more a concrete presentation concern than
an abstract presentation one [6]. Therefore, the UTI di-
agrams need to be refined into concrete presentations.
The generation of concrete presentations from an ab-

stract presentation model is partially described in [7].
The problem of how best to map abstract interaction
objects onto concrete interaction objects, however, is
still a research problem [24].

5 Control-flow Modelling Support

Activity diagram elements can be added to diagrams
using the selection box. Alternatively, activity diagram
elements can be added using the temporal-relation wiz-
ard presented in this section.

This wizard is based on task model techniques that
exploit extensions to UML activity diagrams for mod-
elling control-flow. In fact, task modelling is a well
established technique for modelling the behaviour of
interactive applications [10, 16]. Designers can build a
task hierarchy that models the control-flow of the appli-
cation by decomposing tasks into subtasks and specify-
ing temporal relations between the subtasks. In UML,
application control-flow can be modelled by activity di-
agrams. However, activity diagrams tend to be less
abstract than task models. In particular, inter-object
transitions in activity diagrams tend to be more com-
plex to model than temporal relations in task models.
In fact, the difficulty of modelling inter-object transi-
tions using the statechart constructors was anticipated
by Harel and Gery [9] when statecharts were adopted
by UML. The temporal-relation wizard in ARGOQOi pro-
vides at least two benefits for modelling activity dia-
grams.

1. Tt can reduce the effort of modelling control-flow
using UML. The selection of one of the wizard’s
options creates a complete set of constructors re-
quired for modelling the behaviour of temporal re-
lations in a task model.

2. Tt exploits the potential of SelectionStates and Re-
turnTransitions (as introduced in Section 2.2) for
modelling abstract inter-object transitions, simpli-
fying the control-flow modelling process in UML-
based tools. Indeed, a facility for modelling Or-
derIndependentStates, OptionalStates and Repeat-
ableStates makes the control-flow modelling pro-
cess more similar to the task modelling process
in Ul-specific development environments such as
CTTE [16], MOBI-D [18] and Teallach [2].

The temporal-relation wizard appears every time a
node in an activity diagram is selected, such as for the
state S in Figure 6(b). The wizard is the iconographic
menu to the right of S. We can see the same state S in
Figure 6(a) before it was selected. The other wizards
in Figure 6(b) are standard activity diagram wizards of



ARGO. The temporal-relation wizard has six options
that perform the following actions:

Figure 6. (&) The unselected S state. (b)
The selected § state along with the ARGOj
temporal-relation wizard on its right.

e Sequential option (—): This option builds an ac-
tivity connected to the current node by a tran-
sition. This action is represented graphically in
Figure 7(a).

e Concurrent option (]|): This option builds two ac-
tivities, a join, and a fork. A transition connects
the current node to the fork. Each activity built
has two transitions: one coming from the fork, and
one going to the join. This action is represented
graphically in Figure 7(b).

e Choice option (—2): This option builds two ac-
tivities and a branch. A transition connects the
current node to the branch. Each activity built
has a guarded transition coming from the branch.
The transitions are built guarded to remind de-
signers that these guards may be required. This
action is represented graphically in Figure 7(c).

e OrderIndependent option (®): This option builds
one OrderIndependentState and two activities.
One transition connects the current node to the
OrderIndependentState. Each activity built is con-
nected to the OrderIndependentState by a Return-
Transition. This action is represented graphically
in Figure 7(d).

e Optional option (©): This option builds one Op-
tionalState and two activities. One transition con-
nects the current node to the OptionalState. Each
activity built is connected to the OptionalState
by a ReturnTransition. This action is represented
graphically in Figure 7(e).

e Repeatable option (®): This option builds one Re-
peatableState and one activity. One ReturnTran-

sition connects the current node to the Repeat-
ableState. A ReturnTransition connects the Re-
peatableState to the new activity. This action is
represented graphically in Figure 7(f).

)

(a) (d)

=t —
—

(e)

(REP=)

®)

1 )
¢ l
©

Figure 7. The result of each of the six actions
that can be performed by the temporal rela-
tion wizard. The S state is that from whic h the
wizard is invoked.

Figure 8 shows an snapshot of ARGO7 during the
modelling of the activity diagram in Figure 3. The
OrderIndependentState in Figure 8 was built using the
temporal-relation wizard. In fact, the InitialState of
GetUserDetails corresponts to the S State in Fig-
ure 7(d), and the UserQuery.setLogin(getValue())
and UserQuery.setPassword(getValue()) Action-
States are refinements of the two selectable states cre-
ated along with the OrderIndependentState.

In terms of control-flow modelling, UML still spec-
ifies the ImitialInteractionState. This constructor is a
pseudo-state responsible for specifying the entry-point
of interactive applications [8, 5]. ARGOi provides
an InitialInteractionState creator in the selection box
when editing an activity diagram.

6 Data-flow Modelling Support

Object flows provide the ability to specify data-
flows in activity diagrams. For non-InteractionObjects,
UML: specifies that object flows can be connected to
CompositeStates in addition to ActionStates. For Inter-
actionObjects, UML‘ specifies interaction object flows



E%AIQOIUML - Connect2. argo
File Edit View Create Arrange Gemeration Critique  Help

IM[=1 E3

owmoewne v [ES]E] k]

1] [ol8]=]«]| o=@ cl#+|+|@le|®] (D] 1] [A[S] s oeuem comea

@[3 connect B

5 connect

Connect

(O UserDuerny. Chedklsen)
(@ (anen FinalState)

[ (anon ClassifierinState)
[ ¢anon ClassifiernState)
B eetusemetails

@ (anon Pseudostate)

[ (aneon ClassifierinState) . Esrrmattit
[ canon ClassifierinState)
() UserQuery.setP assword(getvialued)
(O UserDuern.setlagin(getvalued) 3
EF tanon OrderlndependentState) =
(@ (anon Finaistate) E>
@ (anon Pseudostate)

[ (anen ClassifierinState)
[ tanon ClassifierinState)

: Cancel

Get UserDetails

Ussrtusry seiLoginigealus0) - Semnes® v

Userfuery setPassword(getvaluedh <f‘_“'_“_' v v
- passuoniText

S=antivitess s [:

: 0K

—3 (anen Transition)

[4]

[

[*]

~
i (anon Objectf lowState)

@nan Container
Hamespace: |antar: Librarylser
UselCase: SelectServices
Class: Book

Class: Librarylser

Class: Borroveer

Cla=s: Librarian

1 (anon ObjectFlonState) = || L pisgram [0
| By Pricrity - E 117 hzrns + | TaDakem | & Properties [ & Style | & Javadaos [[4 Seurce |{& Canstraints | & Taggedvalues | & Checii=:
= rin Narme
@ 0 Medium s -
& [ Low Sterestype: BN Container

Figure 8. The modelling of the activity diagram in Figure 3.

that: (1) can have an interaction stereotype; and (2)
can be connected to CompositeStates, SelectionStates
and ActionStates.

The modelling of object flows and interaction ob-
ject flows may not be a simple task. Selecting a Classi-
fier, i.e., a Class, UseCase or InteractionObject, to play
the type role in an interaction object flow can be com-
plex due to the number of Classifiers usually available
in interactive application designs. Further, selecting a
proper stereotype for an interactive object flow may be
complex due to the rich semantics of the UML4 interac-
tion stereotypes. For instance, the <presents>> inter-
action stereotype specifies a FreeContainer context [5].

ARGOi provides facilities to cope with the complex-
ity of selecting types and stereotypes for interaction
object flows. A precise description of these facilities,
however, is intentionally avoided here since it requires
a partial description of the UMLi metamodel [5]. How-
ever, examples of these facilities can be provided using
the activity diagram in Figure 3.

6.1 Selecting Typesfor Interaction Object Flows

Classifiers specified in the current UML{ models are

provided as options in the combo box of interaction
object flows. For instance, Figure 8 shows how the
combo box in the properties form can be used to spec-
ify the type of the object flow that is being added to
the Connect Activity. There, the options in the combo
box, e.g., Book Class and SelectServices UseCase,
are Classifiers already specified in the models of the
library system. Considering this type specification ap-
proach, ARGO1 can analyse the current state of the
UML:{ model to filter those Classifiers that cannot be
a type for the selected interaction object flow. Two ex-
amples of the UML‘ model aspects analysed by ARGO1
for filtering Classifiers are the following:

o FreeContainer context. In Figure 3 we can
see the use of the ConnectUI FreeContainer as
a <Kpresentss> interaction object flow of the
Connect activity. This means that only the follow-
ing interaction objects in the models can be made
available for selection as a type of interaction ob-
ject flows used by activities within the Connect
activity:

1. The PrimitivelnteractionObjects contained
by ConnectUT (see Figure 2);



2. The FreeContainers. Indeed, this provides
the ability to create new FreeContainer con-
texts.

o ActionInvoker roles. An instance of a Primitiveln-
teractionObject should not play more than one
role in a FreeContainer, e.g., > Cancel in Fig-
ure 2 should not be associated with any other sub-
activity of the Connect activity in Figure 3 since it
is already responsible for the cancelling behaviour
within the Connect activity. Thus, ARGO7 can
notify designers when it identifies a Primitiveln-
teractionObject playing more than one role.

6.2 Seecting Stereotypes for Interaction Object
Flows

The selection of stereotypes for interaction object
flows can be performed in a property form, like the
selection of interaction object flow types. Once again,
ARGOi can analyse the current state of the models in
order to filter interaction stereotypes that do not suit
the selected interaction object flow. An example of the
UML: model aspects analysed by ARGOQ for filtering
interaction stereotypes is presented as follows:

e Associated state context. If the state associated
with the selected interaction object flow is a Com-
positeState, the interaction stereotype must be
< presents>>, which creates a FreeContainer con-
text, or K cancels>. If the associated state is a
SelectionState, the interaction stereotype must be
L confirms>>, which allows users to indicate the
finishing of an optional selection, or K cancels>.
If the state is an ActionState, the interaction
stereotype must be <interacts>>, which enables
the associated interaction object, or < activates™>,
which makes the associated interaction object a
trigger of the ActionState.

7 Interaction and Domain Object Col-
laboration Support

Interaction and domain objects collaborate in UMLj
models when they are used by object flows sharing com-
mon ActionStates. For example, an instance of the
loginText Inputter collaborates with an instance of
the UserQuery class in the library system since they
share the UserQuery.setLogin(getValue()) Action-
State in Figure 3. Indeed, UMLji makes explicit such
collaboration since it provides a clear distinction be-
tween interaction and non-interaction objects. More-
over, UMLi makes explicit the problem of creating and

preserving the integration between interaction and do-
main objects in the designs of interactive applications.

The problem of creating this integration can be par-
tially addressed through the checking of UML; mod-
els, a topic that is outside the scope of this paper.
The problem of preserving this integration can be min-
imised through the use of the integration wizard. This
wizard is triggered every time a designer deletes any
class or interaction object. Thus, the wizard can check
and notify the designer about ActionStates affected by
such class or interaction object removal. Indeed, de-
signers can have different motivations for modifying
class diagrams and UI diagrams. However, they may
not be able to evaluate the impact of modifying one
diagram in other diagrams.

Considering this problem of preserving the collabo-
ration of the interaction and domain objects, the in-
tegration wizard notifies designers about the effects of
class and interaction object removal in the following
design scenarios:

e Deleting domain classes. The integration wizard
checks in the UML‘ models to see if a domain class
that is to be deleted is a type of an object flow that
shares at least one common state with an Interac-
tionObject.

e Deleting interaction objects. The integration wiz-
ard checks in the UML¢ models to see if a Primi-
tivelInteractionObject to be deleted is a type of an
object flow that shares at least one common state
with a Class.

o Deleting FreeContainers and Containers. The in-
tegration wizard checks in the UML{ models to see
if a Container or a FreeContainer to be deleted
contains PrimitiveInteractionObjects that share
ActionStates with domain classes, as described in
deleting interaction objects above. The deletion
of a Container or FreeContainer in ARGO1 im-
plies the recursive deletion of its contained Inter-
actionObjects. Thus, the integration wizard also
verifies recursively the side-effects of such a dele-
tion in terms of interaction and domain object in-
tegration.

Figure 9 shows the integration wizard when delet-
ing the ConnectUI FreeContainer. In this case, the
integration wizard is activated since the loginText,
passwordText and OK InteractionObjects of the
ConnectUI FreeContainer are associated to Action-
States, as modelled in the activity diagram in Figure 8.



E%a Argo/UML - Connect2. argo

File Edit “iew Create Arrange Generstion  Critique  Help

[pesemeene  ~| R 4] [a[w]0]we] [B]o]oNA[Q[S]E]
Lo @ olass diagram 1
o use case diagram ST TTT T s s s s T s m T T A
o Connect e 1 QDD —————————————————————————— -
@ @ Ul diagram 1 FonnectUl

Q’_‘l CannectUl

S ——— e —

VoA

Login Pazsword

Vg

login Text

f} (anon Container)

1

1

1

1

1

1

» Caneal :
[ ok 1
1

f} (anan Container) :
V pasamord Tesdt 1
1

A Fasaword 1
5 loginTest :
E%' Integration Wizard E2

Cancel

password Test

[4]

E FreeContainer ConnectUl has InteractionObject(s) associated to ActionState(s). Confirm deletion?

By Fr Yes Ho

g
|

T r T
[ g:zdium Hame: ConnectUl Implemerts:
& [ Lowm i sibility: b
Keywords: none -
Extends: -

Figure 9. An attempt to delete the ConnectUI FreeContainer can trig ger the integration wizard.

8 Conclusions integration wizard (Section 7).
This paper shows that the UML specification can ‘ Compared With Tf10§t MB'UIDES; ARGO:i can pro-
be effectively implemented in a UML-based design en- vide the following distinctive benefits:

vironment. Moreover, this paper shows that ARGO1,
a UML4-based tool, can provide support for modelling
a complete interactive application exploiting the UML1

e A graphical notation for modelling inter-model re-
lationships, such as the <presents3> object flow
shown in Figure 3, which explicitly links the pre-

specification. i . .. .
Compared with other UML tools (e.g., Rational sentation model of a UI with the activity diagram
Rose [19], Together [23], ARGO [20]), ARGOi provides modelling the UD’s behaviour. Relationships be-

tween control-flow models (e.g., task models, ac-

additional tool support for: N .
tivity diagrams) and structural models (e.g., class

o modelling abstract user interface presentations us- diagrams, UI diagrams) are modelled in a non-
ing the UML3 user interface diagram (Section 4); graphical way in Teallach [2] and MOBI-D [18].

e modelling common Ul behaviours using the o It allows the construction of domain models along
temporal-relation wizard that exploits the use of with the construction of UI models.

the UML4 SelectionStates (Section 5);

There are MB-UIDEs that integrate a UI design
environment with a mainstream CASE tool. For in-
stance, JANUS [1] uses Together [23] for building its
models, and AME [13] uses the OODevelopTool for
e preserving, when modelled, the integration be- building its models. However, ARGO¢ models can

tween interaction and domain objects using the provide more comprehensive specification of Uls than

e modelling in an explicit and effective way the col-
laboration between interaction and domain ob-
jects (Section 6);



AME and JANUS models. Indeed, ARGOi provides
a generic approach for modelling and relating struc-
tural and dynamic aspects of interactive applications
(Sections 5 and 6). The AME and JANUS approaches
for modelling Uls are quite limited for describing the
behavioural aspects of Uls. Indeed, these approaches
are based on the identification of the operations that
can be executed by each interaction object rather than
modelling the application workflow in an abstract way.

In the context of user interfaces to data intensive
applications, UML¢ and ARGO1 provide the following
benefits:

e integration of UI design with data modelling
through class diagrams;

e comprehensive support for the modelling of data
flow during activities;

e support for form-based interfaces, which are pre-
dominant for most database interfaces;

e backward compatibility with existing UML mod-
els, in which many data intensive applications are
already designed.

UML; has been developed as part of an ongoing
project. The next activities of the project are:

e The modelling of a large-scale interactive applica-
tion using ARGOj;

e The implementation of a Ul software generator in
ARGO:.

Acknowledgements. The first author is sponsored
by Conselho Nacional de Desenvolvimento Cientifico e
Tecnolégico - CNPq (Brazil) — Grant 200153/98-6.

References

[1] H. Balzert, F. Hofmann, V. Kruschinski, and
C. Niemann. The JANUS Application Develop-
ment Environment — Generating More than the
User Interface. In Computer-Aided Design of User
Interfaces, pages 183—-206, Namur, Belgium, 1996.
Namur University Press.

[2] P. Barclay, T. Griffiths, J. McKirdy, N. Pa-
ton, R. Cooper, and J. Kennedy. The Teallach
Tool: Using Models for Flexible User Interface
Design. In Proceedings of CADUI’99, pages 139—
157, Louvain-la-Neuve, Belgium, October 1999.
Kluwer.

[3] D. Benyon, T. Green, and D. Bental. Conceptual
Modelling for Human Computer Interaction using
ERMIA. Springer, London, UK, 1999.

[4] G. Booch, J. Rumbaugh, and I. Jacobson. The
Unified Modeling Language User Guide. Addison-
Wesley, Reading, MA, 1999.

[5] P. Pinheiro da Silva. On the Semantics of the
Unified Modeling Language for Interactive Appli-
cations. In preparation.

[6] P. Pinheiro da Silva. User Interface Declarative
Models and Development Environments: A Sur-
vey. In Proceedings of DSV-1S2000, LNCS, pages
207-226, Limerick, Ireland, June 2000. Springer-
Verlag.

[7] P. Pinheiro da Silva and N. Paton. User In-
terface Modelling with UML. In Proceedings of
the 10th European-Japanese Conference on Infor-
mation Modelling and Knowledge Representation,
Saariselkd, Finland, May 2000. IOS Press. (To

appear).

[8] P.Pinheiro da Silva and N. Paton. UMLi: The
Unified Modeling Language for Interactive Appli-
cations. In Proceedings of UML2000, volume 1939
of LNCS, pages 117-132, York, UK, October 2000.
Springer.

[9] D. Harel and E. Gery. Executable Object Model-
ing with Statecharts. IEEE Computer, 30(7):31—
42, 1997.

[10] P. Johnson. Human Computer Interaction: Psy-
chology, Task Analysis and Software Engineering.
McGraw-Hill, Maidenhead, UK, 1992.

[11] A. Kilgour. Theory and practice in user interface
management systems. Information and Software
Technology, 29:171-175, 1987.

[12] S. Kovacevic. UML and User Interface Modeling.
In Proceedings of UML’98, pages 235-244, Mul-
house, France, June 1998. ESSAIM.

[13] C. Martin. Software Life Cycle Automation for
Interactive Applications: The AME Design Envi-
ronment. In Computer-Aided Design of User In-
terfaces, pages 57-74, Namur, Belgium, 1996. Na-
mur University Press.

[14] B. Myers. User Interface Software Tools. ACM
Trans. Computer-Human Interaction, 2(1):64-
103, March 1995.



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

Object Management Group. OMG Unified Mod-
eling Language Specification, June 1999. Version
1.3.

F. Paterno. Model-Based Design and Evaluation
of Interactive Applications. Springer, Berlin, 1999.

F. Paterno. Towards a UML for Interactive
Systems. In Proceedings of EHCI2001, LNCS,
Toronto, Canada, May 2001. Springer. (To ap-
pear).

A. Puerta. A model-based interface development
environment. IEEE Software, August:40-47, 1997.

T. Quatrani. Visual Modeling with Rational Rose
and UML. Addison-Wesley, 1998.

J. Robbins, D. Hilbert, and D. Redmiles. ARGO:
A Design Environment for Evolving Software Ar-
chitectures. In Proceedings of ICSE’97, pages 600—
601, Boston, MA, May 1997. ACM Press.

P. Szekely. Retrospective and Challenges
for Model-Based Interface Development. In
Computer-Aided Design of User Interfaces, pages
xxi—xliv, Namur, Belgium, 1996. Namur Univer-
sity Press.

P. Szekely, P. Sukaviriya, P. Castells, J. Muthuku-
marasamy, and E. Salcher. Declarative Inter-
face Models for User Interface Construction Tools:
the MASTERMIND Approach. In Engineering
for Human-Computer Interaction, pages 120-150,
London, UK, 1996. Chapman & Hall.

TogetherSoft. http://www.togethersoft.com.

J. Vanderdonckt. Advice-giving systems for select-
ing interaction objects. In User Interfaces to Data
Intensive Systems (UIDIS), pages 152-157, Edin-
burgh, United Kingdom, 1999. IEEE Computer
Society.

M. Zloof. Selected Ingedients in End-User Pro-
gramming. In Proceedings of the Working Con-
ference on Advance Visual Interfaces (AVI’98),
pages 30-35, L’Aquila, Italy, May 1998. ACM
Press.



