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Abstract

The Semantic Web lacks support for explaining answers from web applications.
When applications return answers, many users do not know what information
sources were used, when they were updated, how reliable the source was, or what
information was looked up versus derived. Many users also do not know how implicit
answers were derived. The Inference Web (IW) aims to take opaque query answers
and make the answers more transparent by providing infrastructure for present-
ing and managing explanations. The explanations include information concerning
where answers came from (knowledge provenance) and how they were derived (or
retrieved). In this article we describe an infrastructure for IW explanations. The
infrastructure includes: IWBase – an extensible web-based registry containing de-
tails about information sources, reasoners, languages, and rewrite rules; PML – the
Proof Markup Language specification and API used for encoding portable proofs;
IW browser – a tool supporting navigation and presentations of proofs and their
explanations; and a new explanation dialogue component. Source information in
the IWBase is used to convey knowledge provenance. Representation and reasoning
language axioms and rewrite rules in the IWBase are used to support proofs, proof
combination, and Semantic Web agent interoperability. The Inference Web is in use
by four Semantic Web agents, three of them using embedded reasoning engines fully
registered in the IW. Inference Web also provides explanation infrastructure for a
number of DARPA and ARDA projects.
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1 Introduction

Inference Web (IW) aims to enable applications to generate portable and
distributed justifications for any answer they produce. IW addresses needs
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that arise with systems performing reasoning and retrieval tasks in heteroge-
neous environments such as the web. Users (humans and computer agents)
need to decide when to trust answers before they can use those answers with
confidence. We believe that the key to trust is understanding. Explanations
of knowledge provenance and derivation history can be used to provide that
understanding [20]. In one simple case, users retrieve information from indi-
vidual or multiple sources and they may need knowledge provenance (e.g.,
source identification, source recency, authoritativeness, etc.) before they de-
cide to trust an answer. Users may also obtain information from systems that
manipulate data and derive information that was implicit rather than explicit.
Users may need to inspect information contained in the deductive proof trace
that was used to derive implicit information before they trust the system an-
swer. Many times proof traces are long and complex so users may need the
proof transformed (or abstracted) into something more understandable that
we call an explanation.

Some users will decide to trust the deductions if they know what reasoner
was used to deduce answers and what data sources were used in the proof.
Other users may need additional information including how an answer was
deduced before they will decide to trust the answer. Users may also obtain
information from hybrid and distributed systems and they may need help in-
tegrating answers and solutions. As web usage grows, a broader and more
distributed array of information services becomes available for use and the
needs for explanations that are portable, sharable, and reusable grows. In-
ference Web addresses the issues of knowledge provenance with its registry
infrastructure called IWBase. It also addresses the issues concerned with in-
specting proofs and explanations with its browser. It addresses the issues of
explanations (proofs transformed by rewrite rules for understandability) with
its language axioms and rewrite rules. IW addresses the needs for combination
and sharing with its Proof Markup Language (PML) specification.

In this article, we include a list of explanation requirements gathered from past
work, literature searches, and from surveying users. We present the Inference
Web architecture and provide a description of the major IW components in-
cluding the PML specification [27] and API, the IWBase registry [22,28] (con-
taining information about inference engines, proof methods, ontologies, and
languages and their axioms), the explanation dialogue component, the proof
abstractor API, and the justification browser. We also provide some simple
usage examples. We conclude with a discussion of our work in the context of
explanation work and state our contributions with respect to trust and reuse.
This article is an expanded and updated version of an earlier conference pa-
per [21]. The primary updates include the integration with the Proof Markup
Language, a description of the IWBase architecture, an alpha version of an
explanation dialogue component, and a broadening of the work to add focus
on explaining query plans, satisfiability results, and results from extraction
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engines.

2 Background and Related Work

Recognition of the importance of explanation components for reasoning sys-
tems has existed in a number of fields for many years. For example, from the
early days in expert systems (e.g., MYCIN [29]), expert systems researchers
identified the need for systems that understood their reasoning processes and
could generate explanations in a language understandable to its users. Infer-
ence Web attempts to stand on the shoulders of past work in expert systems,
such as MYCIN and the Explainable Expert System [32] on generating expla-
nations.

IW also builds on the learnings of explanation in description logics (e.g., [1],
[2], [16], [18]) which attempt to provide a logical infrastructure for separat-
ing pieces of logical proofs and automatically generating follow-up questions
based on the logical format. IW goes beyond this work in providing an in-
frastructure for explaining answers in a distributed, web-based environment
possibly integrating many question answering agents using multiple reasoners.
IW provides access to multiple justification paths that may lead to a single
conclusion and those paths may integrate conclusions from different systems
with distributed components. IW also attempts to integrate learnings from
the theorem proving community on proof presentation(e.g., [4,8]) and expla-
nation (e.g., [14]), moving from proof tracing presentation to abstractions and
understandable explanations. IW attempts to learn from this and push the
explanation component started in Huang’s work and also add the emphasis
on provenance and distributed environments.

The work in this article also builds on experience designing query components
for frame-like systems [3,16,10] to generate requirements. The foundational
work in those areas typically focus on answers and only secondarily on in-
formation supporting the understanding of the answers. In our requirements
gathering effort, we obtained requirements input from contractors in DARPA-
sponsored programs concerning knowledge-based applications (the High Per-
formance Knowledge Base program 1 , Rapid Knowledge Formation Program 2 ,
and the DARPA Agent Markup Language Program 3 ) and more recently, the
ARDA AQUAINT 4 and NIMD 5 programs and DARPA’s IPTO Office pro-

1 http://reliant.teknowledge.com/HPKB/
2 http://reliant.teknowledge.com/RKF/
3 http://www.daml.org
4 http://www.ic-arda.org/InfoExploit/aquaint/
5 http://www.ic-arda.org/Novel Intelligence/
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grams. We also gathered requirements from work on the usability of knowledge
representation systems (e.g., [19]) and ontology environments (e.g., [7,15]).
We have also gathered needs from the World Wide Web Consortium efforts
on CWM 6 and the related reasoner effort on Euler 7 . Finally, we gathered
knowledge provenance requirements from the programs above and from pre-
vious work on data provenance from the database community(e.g., [5]) and
more recently from work integrating information from extractors such as the
work in Tap 8 [13] leading to our enhanced knowledge provenance infrastruc-
ture [28] and information integrators (e.g., ISI’s Prometheus mediator 9 which
uses information obtained from Fetch’s 10 wrappers in appropriate domains).
Additionally requirements have been more recently obtained from initial ef-
forts to explain text analytics work (e.g., IBM’s UIMA [9]) as well as initial
efforts to explain semantic matches using satisfiability engines (e.g., [12]).

3 Requirements

If humans and agents need to make informed decisions about when and how
to use answers from applications, there are many things to consider. Deci-
sions will be based on the quality of the source information, the suitability
and quality of the reasoning/retrieval engine, and the context of the situa-
tion. Particularly for use on the web, information needs to be available in a
distributed environment and be interoperable across applications.

3.1 Support for Knowledge Provenance Information

Even when search engines or databases simply retrieve asserted or “told”
information, users (and agents) may need to understand where the source in-
formation came from with varying degrees of detail. Similarly, even if users
are willing to trust the background reasoner in a question answering environ-
ment, they may need to understand where the background reasoner obtained
its ground facts. Information about the origins of asserted facts, sometimes
called provenance, may be viewed as meta information about told information.
Knowledge provenance requirements may include:

• Source name (e.g., CIA World Fact Book). If facts are encountered in multi-
ple sources, any integrated solution needs to have a way of identifying from

6 http://www.w3.org/2000/10/swap/doc/cwm.html
7 http://www.agfa.com/w3c/euler/
8 http://tap.stanford.edu
9 http://www.isi.edu/info-agents/Prometheus/
10 http://www.fetch.com
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which source information was taken
• Date and author(s) of original information and any updates
• Authoritativeness of the source (is this knowledge store considered or cer-
tified as reliable by a third party?)

• Degree of belief (is the author certain about the information?)
• Degree of completeness (Within a particular scope, is the source considered
complete. For example, does this source have information about all of the
employees of a particular organization up until a some date? If so, not finding
information about a particular employee would mean that this person is not
employed, counting employees would be an accurate response to number of
employees, etc.)

The information above could be handled with meta information about content
sources and about individual assertions. Additional types of information may
be required if users need to understand the meaning of terms or implications
of query answers.

• Term or phrase meaning (in natural language or a formal language)
• Term inter-relationships (ontological relations including subclass, super-
class, part-of, etc.)

As a system addresses meta information, many additional issues come into
play such as security, access, efficiency, and usage. We have separated these
into a separate list since they may appear to be a secondary in that they
arise as a result of meeting the needs of the initial knowledge provenance
demands. There is overlap on many of these requirements with those placed on
sophisticated database applications. Also, the topics above are addressed in IW
by providing explicit support for Dublin Core-like properties and is evolving
as user needs and usage patterns reveal other informational needs. The topics
below, in some cases, have preliminary support levels in our implementation
and we have plans to increase the support in future work.

• Unique identifiers for provenance information
• Effective methods for indexing, storing, and querying provenance informa-
tion

• Persistence of provenance information
• Support for privacy levels in storage and access
• Support for views based on a number of criteria such as privacy level, topic,
thread, etc.

• Support for reuse of provenance information – tool support may be required
for retrieving and reusing meta-information across multiple queries, e.g., the
reuse of inference rule meta information generated by multiple engines

• Support for reasoning about provenance information
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3.2 Support for Reasoning Information

Once systems do more than simple retrieval, additional requirements result. If
information is manipulated as a result of integration, synthesis, abstraction,
deduction, etc., then users may need access to a trace of the manipulations
performed along with information about the manipulations as well as infor-
mation about the provenance. We refer to this as reasoning traces or proof
traces. Note that we consider any system that manipulates information to be a
reasoner. For example, in additional to standard theorem provers, we consider
extractors that take text as input and output markup and/or logical form to
be reasoners. Similarly, we consider systems that take a query as input and in
addition to answers are able to generate a query plan as output. Requirements
as a result of reasoning may include the following:

• The reasoner used
• Reasoning method (e.g., tableaux, model elimination, extraction type, etc.)
• Inference rules supported by the reasoner
• Reasoner soundness and completeness properties
• Reasoner assumptions (e.g., closed world vs. open world, unique names as-
sumption, etc.)

• Reasoner authors, version, etc.

The previous points all address meta information concerning the reasoner.
The next set of requirements arise from using a reasoner and working with it
in the context of an answer. These include:

• Detailed trace of inference rules applied (with appropriate variable bindings)
to provide conclusion

• Term coherence (is a particular definition incoherent?)
• Were assumptions used in a derivation? If so, have the assumptions changed?
• Source consistency (is there support in a system for both A and ¬A)
• Support for alternative reasoning paths to a single conclusion
• Support for accessing alternative reasoning paths to the same conclusion
• Support for accessing the implicit information that can be made explicit
from any particular reasoning path

3.3 Support for Explanation Generation

While knowledge provenance and proof traces may be enough for expert logi-
cians when they attempt to understand why an answer was returned, usually
they are inadequate for a typical user. For our purposes, one of our views of
an explanation is as a transformation of a proof trace into an understandable
justification for an answer. With this view in mind, we consider techniques
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for taking proofs and proof fragments and rewriting them into abstractions
that produce the foundation for what is presented to users. In order to handle
rewriting, details of the representation and reasoning language must be cap-
tured along with their intended semantics. Additionally, users may need to
know both what manipulations were done (i.e., what rules of inference were
used) as well as how manipulations were done (i.e., what was the plan used to
obtain information, were resource limitations in place, etc.) Support for both
kinds of proof traces and their abstractions into explanations are needed in
many applications. Requirements for explanations may include:

• Representation language identification
• Representation language descriptions (e.g., DAML+OIL, OWL, RDF, etc.)
• Axioms capturing the semantics of the representation languages
• Description of rewriting rules based on language axioms

Much of the past work on explanation, whether from expert systems, theorem
proving, or description logics, has focused on single systems or integrated sys-
tems that either use a single reasoner or use one integrated reasoning system.
Systems being deployed on the web are moving to distributed environments
where source information is quite varied and sometimes question answering
systems include hybrid reasoning techniques. Additionally multi-agent sys-
tems may provide inference by many applications. Thus many additional re-
quirements for proofs and their explanations may arise from a distributed
architecture. Some requirements we are addressing are listed below:

• Reasoner result combinations (if a statement is proved by one system and
another system uses that statement as a part of another proof, then the
second system needs to have access to the proof trace from the first system)

• Portable proof interlingua (if two or more systems need to share proof frag-
ments, they need a language to use as an interlingua for sharing proofs)

• Support for registering translators and comparators that can be used to
translate statements from one language to another and can be used to iden-
tify similarities and differences between statements

• Support for handling conflicting information

3.4 Support for Proof Presentation

If humans are expected to view proofs and their explanations, presentation
support needs to be provided. Human users will need some help in asking
questions, obtaining manageable size answers, asking follow-up question, etc.
Additionally, even agents need some control over proof requests. If agents
request very large proofs, they may need assistance in breaking them into
appropriate size portions and also in asking appropriate follow-up questions.
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Requirements for proof presentation may include:

• Method(s) for asking for explanations (or proofs)
• Method(s) for breaking up proofs into manageable pieces
• Method(s) for pruning proofs and explanations to help the user find relevant
information

• Method(s) for proof and explanation navigation (including the ability to
ask followup questions)

• Presentation solution(s) compatible with web browsers
• Method(s) for obtaining alternative justifications for answers
• Different presentation formats (e.g., natural language, graphs, etc.) and as-
sociated translation techniques

• Method(s) for obtaining justifications for conflicting answers

4 Use Cases

Every query-answering environment is a potential new context for the Infer-
ence Web. We provide two motivating scenarios and use the second scenario
for our examples throughout the article. Consider the situation where someone
has analyzed a situation previously and wants to retrieve this analysis. In or-
der to present the findings, the analyst may need to defend the conclusions by
exposing the reasoning path used along with the source of the information. In
order for the analyst to reuse the previous work, s/he will also need to decide
if the source information and assumptions used previously are still valid (and
possibly if the reasoning path is still valid).

Another simple motivating example arises when a user asks for information
from a web application and then needs to decide whether to act on the infor-
mation. For example, a user might use a search engine interface or a query
language such as OWL-QL 11 for retrieving information such as “zinfandels
from Napa Valley” or “wine recommended for serving with a spicy red meat
meal” (as exemplified in the wine agent example in the OWL guide document
[31]). A user might ask for an explanation of why the particular wines were
recommended as well as why any particular property of the wine was recom-
mended (like flavor, body, color, etc.). The user may also want information
concerning whose recommendations these were (a wine store trying to move its
inventory, a wine writer, etc.). In order for this scenario to be operationalized,
we need to have the following:

• A way for applications (reasoners, retrieval engines, etc.) to dump justi-
fications for their answers in a format that others can understand. This

11 http://ksl.stanford.edu/projects/owl-ql/
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supports the distributed proofs requirements above. To solve this problem
we introduce a portable and sharable proof specification called the Proof
Markup Language.

• A place for receiving, storing, manipulating, annotating, comparing, and
returning meta information used to enrich proofs and proof fragments. To
address this requirement, we introduce the IWBase for storing the meta
information and the Inference Web registrar web application for handling
IWBase data. This provides the infrastructure to support the registration
of provenance-related meta information.

• A way to present justifications to the user. Our solution to this has multiple
components. First the IW browser is capable of navigating through proof
dumps provided in PML format. It can display multiple formats including
KIF 12 and a limited form of English. Additionally, it is capable of using
rewrite rules (or tactics) to abstract proofs in order to provide more under-
standable explanations. Finally, we have an alpha version of an explanation
dialogue component. This interface attempts to provide a useful summary
explanation initially and then suggests appropriate follow-up questions cho-
sen by context. The interface also supports an option for user-provided input
that can be used to teach the system about user preferences and requested
updates. Using this combination, we address issues related to reasoning,
explanations, and presentation.

We will use the Wine Agent example to introduce the components of the
Inference Web in the future sections. One typical task of the Wine Agent is to
take a particular meal or a description of a meal as input and then to suggest
a particular wine to serve with the meal or a description of the wine to serve
with the meal. Typical questions that a user (or agent) might ask include:
What color wine should be served? (white, red, etc.) What variety of wine
should be served? (zinfandel, chardonnay, etc.) What type of food is being
served? (a seafood dish, meat, etc.) Why is the system suggesting a particular
wine or property?

Note that although these questions may seem superficial, the reasoning used to
determine the suggestions or explanations is analogous to the reasoning used
in configuration or matching tasks. In fact, the original wines demo was built
to represent the reasoning that was being done in a complicated configurator
implementation for telecommunications equipment but was cast in a more
approachable domain for demonstrations[25].

12 http://logic.stanford.edu/kif/kif.html
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5 Inference Web

The Inference Web framework contains the following:

• data used for representing proofs, explanations, and meta information about
proofs and explanations;

• software tools and services used for building, maintaining, presenting, and
manipulating proofs.

In terms of data, the Inference Web provides the Proof Markup Language –
an OWL-based specification for documents representing both proofs and proof
meta information. PML classes are OWL[24] classes (thus they are subclasses
of owl:Class) and they are either proof elements (proof level concepts) or
provenance elements (provenance level concepts).

Inference Web proofs and explanations are represented within PML documents
built using proof elements and referring to provenance elements, as described
in Section 5.1. PML documents become a portion of the Inference Web data
used for combining and presenting proofs and for generating explanations. Fig-
ure 1 presents an abstract and partial view of the Inference Web framework 13

showing proofs and explanations in the web. Inference Web data also includes a
distributed repository of PML documents representing proof-related meta in-
formation. The PML descriptions include provenance information about proof
elements such as sources, inference engines and inference rules, as described in
Section 5.2. IWBase is an infrastructure within the Inference Web framework
for proof meta information, as described in Section 5.3.

Fig. 1. Inference Web framework overview.

13 A more detailed view is available at http://iw.stanford.edu/arch details.html
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In terms of software, Inference Web tools include: the registrar for handling
IWBase entries, as described in Section 5.3; the proof abstractor API for
transforming potentially long and incomprehensible PML proofs into shorter
and more understandable PML explanations, as described in Section 5.4; the
browser for displaying proofs, as described in Section 5.5; the explanation
dialogue component for providing an explanation dialogue with users, as de-
scribed in Section 5.6; and planned future tools such as proof web-search
engines, proof verifiers, proof combinators, and truth maintenance systems.
Figure 1 presents how IW data is used by some of the IW tools mentioned
above. For instance, it shows that the explainer has PML proofs as inputs and
outputs. In this article, we limit our discussion to the PML specification (and
an associated API), IWBase architecture (and the associated registrar tools
and proof generation services), explanations, and the browser.

5.1 PML Proof Elements

Our PML specification includes two major components for building proof
trees: NodeSets and InferenceSteps. Figure 2 presents a typical dump of
an IW node set. It may have been dumped after a user asked the wine agent
for a wine recommendation and then the user was interested in determining
the color of the recommended wine. A NodeSet represents a step in a proof
whose conclusion is justified by any of a set of inference steps associated with
the NodeSet. PML adopts the term “node set” since each instance of NodeSet
can be viewed as a set of nodes gathered from one or more proof trees having
the same conclusion. The iw:hasConclusion property of a node set represents
the expression concluded by the proof step. Every node set has one conclusion,
and a conclusion of a node set is represented in the language specified by the
iw:hasLanguage property of the node set. In the example, the node set has a
conclusion stating that the color of WINE9 is ?x or the value of the color prop-
erty of WINE9 is the item of interest. The node set represents a statement and
the last step in a deductive path that led a system to derive the statement.

In general, each node set can be associated with multiple or single inference
steps as presented by the iw:isConsequentOf property of the node set in
Figure 2. A proof can then be defined as a tree of inference steps explaining
the process of deducing the consequent sentence (a more formal definition of
proofs within PML documents is described in [27]). In terms of number of
files, a proof can physically vary from a single PML file containing all its node
sets to many PML files, each one containing a single node set. Also, PML
files containing node sets can be distributed in the web. Considering the IW
requirement that proofs need to be combinable, it is important to emphasize
that a set of PML node sets inter-connected by their inference steps is a
forest of proof trees since each node set can have multiple inference steps,
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<rdf:RDF>

<iw:NodeSet rdf:about="http://.../IW1_0.owl#IW1_0">

<iw:hasConclusion>

(wines:COLOR WINE9 ?x)

</iw:hasConclusion>

<iw:hasLanguage

rdf:resource="http://.../registry/LG/KIF.owl#KIF"/>

<iw:isConsequentOf rdf:parseType="Collection">

<iw:InferenceStep>

<iw:hasRule

rdf:resource="http://.../registry/DPR/GMP.owl#GMP"/>

<iw:hasInferenceEngine

rdf:resource="http://.../registry/IE/JTP.owl#JTP"

rdf:type="http://.../iw.owl#InferenceEngine"/>

<iw:hasAntecedent rdf:parseType="Collection">

<iw:NodeSet rdf:about="http://.../IW1_1.owl#IW1_1"/>

<iw:NodeSet rdf:about="http://.../IW1_5.owl#IW1_5"/>

</iw:hasAntecedent>

<iw:hasVariableMapping rdf:parseType="Collection">

<iw:VariableMapping iw:Variable="?x">

<iw:Term>

|http://.../wines.owl#|::|White|

</iw:Term>

</iw:VariableMapping>

</iw:hasVariableMapping>

</iw:InferenceStep>

</iw:isConsequentOf>

</iw:NodeSet>

</rdf:RDF>

Fig. 2. A PML node set.

each inference step representing an alternative justification for the node set
conclusion.

An InferenceStep represents a justification for the conclusion of a node set.
Inference steps are anonymous OWL classes defined within node sets. For this
reason, it is assumed that applications handling PML proofs are able to iden-
tify the node set of an inference step. Also for this reason, inference steps
have no URIs. For an IW proof, an InferenceStep is a single application
of an inference rule, whether the rule is primitive or derived as discussed in
Section 5.3. Inference rules (such as modus ponens) can be used to deduce a
conclusion from any number of antecedents (that are the conclusions of other
node sets). Inference steps contain URI references to node sets concluding its
antecedents, the inference rule used, the supporting sources for the justifica-
tion, and any variable bindings used in the step. There is no source associated
with the node set in Figure 2 since it is derived (although it could be derived
and associated with a source). If it had been asserted, it would require an
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association to a source, which is typically an ontology that contains it. The
antecedent sentence in an inference step may come from conclusions in other
node sets, existing ontologies, extraction from documents, or they may be
assumptions.

With respect to a query, logical starting points for a set of PML node sets are
the node sets concluding the answer sentences for the query. Any node set can
be presented as a stand alone, meaningful proof fragment as it contains at least
one inference step, and each one of its inference steps has the inference rule
used along with links to the inference step antecedents, sources and variable
bindings.

The IW infrastructure can automatically generate follow-up questions for any
proof fragment by asking how each antecedent sentence was derived. The in-
dividual proof fragments may be combined together to generate a complete
proof, i.e., a set of inference steps culminating in inference steps containing
only asserted (rather than derived) antecedents. When an antecedent sentence
is asserted, there are no additional follow-up questions required and that ends
the complete proof generation. The specification of IW concepts used in Fig-
ure 2 is available at http://iw.stanford.edu/2004/03/iw.owl.

5.2 PML Provenance Elements

Provenance elements are used to provide information about the components
used in a proof. Every IWBase entry is an instance of an PML provenance
element. InferenceEngine, Language, and Source are the core provenance el-
ements. Other PML provenance elements are related to one of these core
elements.

The InferenceEngine is a core concept since every inference step should have
a link to at least one entry of InferenceEngine that was responsible for in-
stantiating the inference step itself. For instance, Figure 2 shows that the
iw:hasInferenceEngine property of iw:InferenceStep has a pointer to
JTP.owl, which is the IWBase meta information about Stanford’s JTP 14

model-elimination theorem prover. Inference engines currently may have the
following properties associated with them: name, URL, author(s), date, version
number, organization, etc. The property list may expand as usage demands
dictate.

InferenceRule is one of the more important concepts associated with Infer-

enceEngine. Inference rules basically tell a user or agent what kind of ma-
nipulations a particular inference engine may perform. With respect to an

14 http://www.ksl.stanford.edu/software/jtp/
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inference engine, registered rules can be either primitive or derived from other
registered rules. Figure 3 contains a screen shot from an IW browser interface
presenting the entry for the modus ponens (MP) rule. Thus, MP may be a
primitive rule for some inference engines 15 . Each of the inference rules may
include a name, description, optional example, and optional formal specifica-
tion. Figure 3 shows that the MP inference rule can be formally specified by
the string “%p, (implies %p %q) |- %q;; (Sent %p %q)” that is written
in Proof Protocol for Deductive Reasoning (PPDR) [26], which is built on
top of the evolving SCL 16 . Thus, the meaning of the MP rule comes from
the PPDR semantics and the MP specification in PPDR. Given a rule: it has
“%p” and “(implies %p %q)” as premises; ”%q” as conclusion; and “(Sent
%p %q)” as side-condition. Moreover, premises and conclusion are sentence
patterns since they use meta-variables (e.g., %p and %q). The (Sent %p %q)

side condition says that the arguments %p and %q used in the premises and
conclusion can be bound to a sentence.

Fig. 3. Sample IWBase entry for an inference rule.

Inference Web does not have a specific standard language for formalizing in-
ference rule specifications. Instead, through PML, Inference Web provides a
mechanism for registering rule specifications and the languages used to state
the rule specifications. For instance, in the MP example above the rule speci-
fication is written in PPDR, which is an appropriate language for describing
rules used in proofs where conclusions are written in KIF. Any valid instan-

15 MP or any rule may be primitive for one reasoner while it may be derived for
another reasoner.
16 http://cl.tamu.edu/docs/scl/scl-latest.html
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tiation of the premises and conclusion of the MP rule specification above are
valid KIF sentences. PPDR is a convenient choice for rule specification since
it was designed for this purpose, is built on the next generation of KIF, and is
understood by Inference Web, thereby enabling Inference Web to provide proof
abstraction services. It is not the only choice however that can be registered –
rules may be specified in other languages as well. The downside to registration
in languages other than SCL is that some IW tools such as proof checkers,
however, may be unable to provide as many services for proofs applying rules
formally specified in languages that the tools cannot understand.

Our experience specifying primitive rules in the Inference Web has demon-
strated that a significant proportion of them can be formalized completely by
a declarative specification language for rules such as PPDR. PML refers to
these rules that can be formalized completely DeclarativeRules. Rules that
can not be fully specified formally are called MethodRules since rules of this
category may need to rely on an additional method for deciding whether an
inference step based on a method rule is a valid application of the rule. Method
rules are specified in PML in order to accommodate meta-information about
rules often called procedural attachments. For method rules, in addition to the
formal specification, PML allows the registration of a method and a language
used to write the method. In fact, the formal specification string of a method
rule can still be used for matching premises with conclusions while the rule
method can be applied later at proof-checking time to verify the correct use
of the rule in a proof.

Many reasoners also use a set of derived rules that may be useful for optimiza-
tion or other efficiency concerns. One individual reasoner may not be able to
provide a proof of any particular derived rule but it may point to another
reasoner’s proof of a rule. Thus, reasoner-specific rules can be explained in the
IWBase before the reasoner is actually used to generate PML proofs. Infer-
ence Web thus provides a way to use one reasoner to explain another reasoner’s
inference rules (This was the strategy used in [2,1] for example where the per-
formance tableaux reasoner was explained by a set of natural-deduction style
inference rules in the explanation system). This strategy may be useful for
explaining heavily optimized inference engines. It may also be useful for situa-
tions where it is known that one reasoning method (such as tableaux) is better
for one type of explanation (such as counter example-based explanations of
negative results), while another method is better for another type of explana-
tion. IWBase already contains inference rule sets for many common reasoning
systems. Users may view inference rule sets to help them decide whether to use
a particular inference engine. Today IWBase contains rule sets for JTP, JTP’s
special purpose reasoners for DAML/OWL and temporal reasoning, SNARK,
JSAT, ISI’s Mediator, and ten of IBM’s UIMA extractor engines. It also has
partial rule sets for some other reasoners.
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Inference engines may use specialized language axioms to support a language
such as OWL or RDF. Language is a core IWBase concept. Axiom sets such
as the one specified in [11] may be associated with a Language. The axiom
set may be used as a source and specialized rewrites of those axioms may be
used by a particular theorem prover to reason efficiently. Thus proofs may
depend upon these language-specific axioms sets called LanguageAxiomSets

in the IW. It is worth noting that an entry of Language may be associated
with a number of entries of LanguageAxiomSet as different reasoners may find
different sets of axioms to be more useful. For example, JTP uses a horn-style
set of DAML axioms for its DAML reasoner while another reasoner may use
a slightly different set for efficiency, stylistic, interoperability, or presentation
reasons. Also, an entry of an Axiom can be included in multiple entries of
LanguageAxiomSet. The content attribute of Axiom entries contains the axiom
stated in the language specified by the language attribute of Axiom.

Source is the other core IWBase concept and it is a provenance element since it
is used to identify the origin of a piece of information. Source is specialized into
five basic classes: Person, Team, Publication, Ontology 17 , Organization and
Website. At the moment, we are expanding the specification of (authoritative)
sources as required. We have begun with a minimal description of these sources
in the initial specification used in the IW and are expanding as needed based
on empirical usage studies. Entries of Ontology, for example, describe stores of
assertions that may be used in proofs. It can be important to be able to present
information such as ontology source, date, version, URL (for browsing), etc.
IW uses ontology in a broad sense [17] and includes both conceptual models
as well as individual information and thus both knowledge bases and domain
models are registered as ontologies in IWBase. Figure 4 contains a sample
ontology registry entry for the ontology used in our wine examples.

5.3 IWBase

IWBase is an interconnected network of distributed repositories of proof and
explanation meta information. Each repository of the network is an IWBase

node residing in a web server. An IWBase node entry is a URI on the resid-
ing web server containing an OWL document of a provenance element. The
content of each IWBase node URI is also mirrored in a database system.
Therefore, PML proofs and explanations can have direct access to their meta
information by resolving their URI references to IWBase entries.

IWBase node services, however, may need more sophisticated ways of query-
ing the entries since they may not know exactly which entry to retrieve, for
example, when an IWBase user needs to browse the entries in a node. In these

17 LanguageAxiomSet is a subclass of Ontology.
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Fig. 4. Sample IWBase entry for an ontology.

cases, the services can take advantage of the underlying database system for
querying node entries. For instance, in order to interact with IWBase, each
node provides a collection of services collectively called a node registrar that
supports users in updating or browsing the registry. The registrar may grant
update or access privileges on a provenance element basis and the node ad-
ministrator may define and implement policies for accessing the IWBase node.
The generation of proof fragments is a straightforward task once inference en-
gine data structures storing proof elements are identified as IW components.
To facilitate the generation of proofs, IWBase provides a set of SOAP-based
web services that dump proofs from IW components and uploads IW com-
ponents from proofs. This service is a language-independent facility used to
dump proofs. Also, it is a valuable mechanism for recording the usage of IW-
Base entries.

In addition to the generic properties of IWBase nodes described above, the
IWBase architecture specifies that each node is either a core node or a domain

node. In fact, some provenance elements such as inference engine, inference

rule and language are so generic that it may be appropriate to gather them in a
single node, the core node, that is also publicly available for the other IWBase
nodes. The current demonstration registrar for the core node is available at:
http://inferenceweb.stanford.edu/iwregistrar/ and is one example core node.
The core node architecture is convenient when there is one set of entries that
describe the main meta information about the common engines, their rules,
and representation and reasoning languages. Empirically, we have found our
current uses of Inference Web benefit from such a core node. However, domain
ontologies and their related meta information can vary widely from project
to project thus these are appropriate to maintain in project-specific domain
nodes. Just as the notion of upper ontologies is both popular and contentious,
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we anticipate some upper level ontologies to emerge that are popular enough
and reused enough that Inference Web users will find that it may be beneficial
to have these included in the core node registries. We expect these decisions
to evolve with usage.

The IWBase architecture also specifies some services supporting the collabora-
tion between the nodes. Basic services for making local copies of node entries
are provided by a concurrent version system (CVS) repository where the OWL
URIs are stored. Using the CVS services, users can check out personal copies
of other node entries (whether they are entries from the core or a domain node)
and store them locally. In our usage to date, we have found that domain node
administrators may prefer to keep local copies of the core node for efficiency
and/or privacy issues. More sophisticated services are provided for interacting
with domain nodes. For instance, the administrator of a domain node (e.g, a
node specialized with meta information about laptops) can specify that the
node has visibility of another domain node. So, if a domain node for laptop
computers may benefit from reusing some meta information already stored in
a domain node about computers in general, it may use that node. These ser-
vices between domain nodes also provide a solution for the problem of deciding
where to store meta information about the so-called upper level ontologies. In
fact, it is up to the users of another domain node to decide whether they want
to reuse meta information about other ontologies and thus they may decide
what they would like to include.

The current IWBase provides support for provenance information at the level
of knowledge bases and ontologies. However, we are in the process of extending
the IWBase infrastructure in order to provide support for provenance informa-
tion whenever it is possible to identify some document or document element
to which we can associate provenance information as described in [28].

5.4 Proof Abstractor API

Although essential for automated reasoning, inference rules such as those used
by theorem provers and registered in the IWBase as InferenceRule entries
are often inappropriate for “explaining” reasoning tasks. Moreover, syntactic
manipulations of proofs based on atomic inference rules may also be insuffi-
cient for abstracting machine-generated proofs into some more understandable
proofs [14]. Proofs, however, can be abstracted when they are rewritten us-
ing rules derived from axioms and other rules. Axioms in rewriting rules are
the elements responsible for recognizing patterns and providing rewritten ab-
stracted versions of the rules. Entries of DerivedRule are the natural candidates
for storing specialized sets of rewriting rules. In IW, tactics are rewrite rules
associated with axioms, and are used independent of whether a rule is atomic
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or derived.

The proof abstractor algorithm generates explanations in a systematic way
using IWBase derived rules. Many intermediate results are “dropped” along
with their supporting axioms, thereby abstracting the structure of proofs,
when applying the algorithm. The general result is to hide the core reasoner
rules and expose abstractions of the higher-level derived rules. An exam-
ple of an IW explanation is described in the Inference Web web page at:
http://iw.stanford.edu/documents abstractions.html. The implementation of
the proof abstractor API is work in progress. We have used the current rewrite
rule set to abstract presentations of answers obtained from JTP in analysis
applications.

5.5 Browser

Inference Web includes a browser that can display both proofs and their expla-
nations in a number of proof styles and sentence formats. Initially, we include
the “English”, “Proof” and “Dag” styles and the restricted “English”, “KIF”
and “Raw” preferred sentence formats 18 . We also expect that some applica-
tions may implement their own displays using the IW API and one of our
projects uses this model. The IW browser implements a lens metaphor re-
sponsible for rendering a fixed number of levels of inference steps depending
on the lens magnitude setting. The prototype browser allows a user to see
up to five levels of inference steps simultaneously along with their conclusions
and antecedent sentences.

Figure 5 shows a screen shot of the browser presenting two levels of inference
step for one proof of the wine use case in Section 4. Prior to this view, the
program has asked what wine to serve with a seafood course. Figure 5 shows
a proof fragment concluding that New-course, which is the selected meal
course, requires a drink that has a white color since it is a seafood course. The
sentences are formatted in English and the lens magnitude is two, thus the
browser displays the inference steps used to derive the proof fragment con-
clusion including its antecedents and the antecedent’s derivations. Concerning
preferred sentence formats, the browser supports some restricted translations
between sentences that can be requested by the user. For example, the “Raw”
format indicates that the user wants to see node set conclusions as originally
stated. However, if the user selects “KIF”, then if node set conclusions are not
already in KIF, and the browser has a translator from the original language
into KIF, then the browser translates and presents the sentences in KIF. Oth-
erwise, it presents the sentence in its original language. The same method

18 Current investigations are underway for N3 as an additional format.
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Fig. 5. An Inference Web Browser screen.

is used for translating other formats into English, for example. We currently
have a KIF to limited English translator for such needs.

We believe that one of the keys to presentation of justifications is breaking
proofs into separable pieces. Since we present fragments, automatic follow-up
question support is a critical function of the IW browser. Every element in
the viewing lens can trigger a browser action. The selection of an antecedent
re-focuses the lens on an antecedent’s inference step. For other lens elements,
associated actions present IWBase meta information. The selection of an infer-
ence engine box presents details about the inference engine used to derive the
actual theorem. The selection of an inference rule box presents a description
of the rule. The selection of the source icon beside sentences associated with
source documents presents details about sources where the axiom is defined.
In Figure 5, selecting a “Generalized Modus Ponens” box – the inference rule,
would present information about JTP’s Generalized Modus Ponens rule as in
Figure 3.

5.6 The Explanation Dialogue Component

Inference Web includes a new explanation dialogue component that was mo-
tivated by usage observations. Figure 6 shows an IW explainer snapshot ex-
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Fig. 6. An Inference Web Explainer screen.

plaining why WINE9 has color white. The goal is to present a simple format
that is a typical abstraction of useful information supporting a conclusion.
The current instantiation provides a presentation of the question and answer,
the ground facts on which the answer depended, and an abstraction of the
meta information about those facts. There is also a follow-up action option
that allows users to browse the proof or explanation, obtain the assumptions
that were used, get more meta information about the sources, provide input to
the system, etc. Additionally all information presented on any of the screens
is “hot” and thus if someone clicked on any explanation element, they could
obtain information about that element including its description and meta in-
formation. This interface is expected to be the interface with which the average
human user of inference web interacts. We are currently in the mode of gath-
ering feedback and requests from the user community for additional feature
support.
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6 Contributions and Future Work

The Wine Agent 19 and the DAML Query Language Front-End 20 are two
example Semantic Web agents supported by the Inference Web. These agents
are based on the Stanford’s JTP theorem prover that produces PML proofs.
The IWBase is populated with JTP information: one InferenceEngine entry
for the reasoner itself, nine entries for its primitive inference rules, one entry for
its set of DAML axioms, and 56 entries for the axioms. Using this registration
of JTP and the fact that JTP dumps PML proofs, Inference Web can be used
to present proofs and explanations of any of JTP’s answers.

Beyond just explaining a single system, Inference Web attempts to incorpo-
rate best in class explanations and provide a way of combining and presenting
proofs that are available. It does not take one stance on the form of the expla-
nation since it allows deductive engines to dump single or multiple explana-
tions of any deduction in the deductive language of their choice. It provides the
user with flexibility in viewing fragments of single or multiple explanations in
multiple formats. The new explanation dialogue component initially presents
a summary of the question, answer, and the foundation for the answer along
with minimal meta information that helps users evaluate at a glance, how to
interpret an answer. That component then provides a follow-up question list
along with a feedback option for learning.

IW attempts to minimize the burden for interoperability. IW simply requires
inference rule registration and PML format. It does not limit itself to only
explaining deductive engines. It provides a proof theoretic foundation on which
to build and present its explanations, but any question answering system may
be registered in the Inference Web and thus explained. More recently, we
have begun integrating with query planners and extractors and focus more
on explaining the process by which an answer was determined rather than
the exact inference rules used to obtain a particular answer. This lets the
Inference Web provide explanations for tasks that need to know what was
done and also provide explanations for how something was done. For example,
in joint work with IBM, Inference Web can be used to explain the markup
that was generated from text, it can point to the text it used, the extractors
that were used, and the meta information about the text such as its recency
and authoritativeness ranking.

Revisiting the Inference Web requirements in Section 3, we can identify the
following contributions:

• Support for knowledge provenance is provided by: the PML specification

19 http://www.ksl.stanford.edu/people/dlm/webont/wineAgent/
20 http://onto.stanford.edu:8080/dql/servlet/DQLFrontEnd
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that allows node sets to be associated with sources; and the IWBase that
supports meta information for annotating sources and provides database
storage and access to the meta information.

• Support for reasoning information is provided by: the proof specification
that supports a comprehensive representation of proof trees; and the IW-
Base that supports meta information for annotating inference engines along
with their primitive inference rules. Also, the proof specification provides
support for alternative justifications by allowing multiple inference steps per
node set and the proof browser supports navigation of the information.

• Support for explanation generation is provided by the IWBase that supports
both formal and informal information about languages, axioms, axiom sets,
derived and rewrite rules. Rewrite rules provide the key to abstracting com-
plicated proofs into more understandable explanations. The proof support
for alternative justifications allows derivations to be performed by perfor-
mance reasoners with explanations being generated by alternative reasoners
aimed at human consumption.

• Support for distributed proofs is provided by the IW architecture. Proofs are
specified in PML (using the emerging web standard OWL so as to leverage
XML-, RDF-, and OWL-based information services) and are interoperable.
Proof fragments as well as entire proofs may be combined and interchanged.

• Support for proof presentation is provided by a lightweight proof browsing
using the lens-based IW browser. The browser can present either pruned
justifications or guided viewing of a complete reasoning path. Support is
also provided by the explanation dialogue component to provide summaries
and follow-up question support.

We have registered a few theorem provers and updated them so that they
produce PML proofs. Inference Web can then be used to browse proofs and
explanations of any answer produced by those reasoners. Inference web was
originally aimed at explaining answers from theorem provers that encode a set
of declaratively specified inference rules. More recently, we have looked at other
kinds of reasoning engines such as JSAT and can now browse proofs generated
from this satisfiability reasoner [30,23]. In joint work with Ambite, Knoblock
and Muslea, we have also registered the ISI Mediator so that query plans can
be presented by the Inference Web. In joint work with Ferrucci, Murdock,
and Welty from IBM, we have enabled IBM to register a number of their text
analytics engines to enable explanations of markup and KB generation from
text. With these more recent efforts, we have broadened our notion of what
kinds of inference rules and reasoners can be registered and thus broadened
the kinds of question answering systems that can be explained.

Future work includes the registration of more question answering systems –
whether they are theorem provers, planners, extractors, or of other types. We
have encoded some rewrite rules that enable explanations to be generated from
the more detailed proofs but this is an area of future work focus as well. Some
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simple examples of abstracting proofs can be seen on the Inference Web web
site (e.g., http://iw.stanford.edu/documents abstractions.html). Currently, we
are developing tools for generating tactics that are required for explaining
other proofs. We also intend to provide specialized support for why-not ques-
tions expanding upon [6] and [16]. We have also begun an effort to provide
specialized support for explaining contradictory information. We anticipate
special support for integration of proofs that include conflicting statements
so that we can enable users to view conflicting evidence more easily. We are
also looking at additional support for proof browsing and pruning. The initial
explainer dialogue component provides version 1 in this effort but we envision
this work to expand rapidly with broader user communities. We have also initi-
ated conversations with the verification community in order to provide a PML
format that meets their needs as well as meeting the needs of the applications
that require explanation. Initial discussions at least for utilizing IWBase in-
ference rule information with “correct-by-construction” software environments
such as Specware 21 appear promising.

7 Conclusion

Inference Web enables applications and services to generate portable expla-
nations of their conclusions. We identified the support for knowledge prove-
nance, reasoning information, explanation generation, distributed proofs, and
proof/explanation presentation as requirements for explanations in the web.
We described the major components of IW – the PML specification based on
the emerging web language – OWL supporting proofs and their explanations,
the IWBase, the proof abstractor API, the IW browser, and the explanation
dialogue component. We described how Inference Web features provide infras-
tructure for the identified requirements for web explanations. We facilitated
use in a distributed environment by providing IW tools for registering and ma-
nipulating proofs, proof fragments, inference engines, ontologies, and source
information. We also facilitated interoperability by specifying the PML format
and providing tools for manipulating proofs and fragments. We have imple-
mented the IW approach for four Semantic Web agents (three of them based
on JTP and one based on JSAT) and are in discussions with additional rea-
soner authors to include more reasoning engines. We have presented the work
at government sponsored program meetings (RKF, DAML, PAL, AQUAINT,
and NIMD) to gather input from other reasoner authors/users and have ob-
tained feedback and interest. Current registration work includes IBM’s UIMA,
ISI’s Mediator, SRI’s SNARK, and W3C’s CWM.

21 http://www.kestrel.edu/HTML/prototypes/specware.html
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