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Abstract The realization of an international cyberinfrastructure of shared resources

to overcome time and space limitations is challenging scientists to rethink how to docu-

ment their processes. Many known scientific process requirements that would normally

be considered impossible to implement a few years ago are close to becoming a real-

ity for scientists, such as large scale integration and data reuse, data sharing across

distinct scientific domains, comprehensive support for explaining process results, and

full search capability for scientific products across domains. This article introduces the

CI-Miner approach that can be used to aggregate knowledge about scientific processes

and their products through the use of semantic annotations. The article shows how

this aggregated knowledge is used to benefit scientists during the development of their

research activities. The discussion is grounded on lessons learned through the use of

CI-Miner to semantically annotate scientific processes in the areas of geo-sciences, en-

vironmental sciences and solar physics: A use case in the field of geo-science illustrates

the CI-Miner approach in action.

Keywords cyberinfrastructure ⋅ abstract workflow ⋅ scientific process ⋅ scientific

workflow ⋅ ontology ⋅ distributed provenance

1 Introduction

Cyberinfrastructure (CI) is “the set of organizational practices, technical infrastructure

and social norms that collectively provide for the smooth operation of scientific work

at a distance” [12]. A goal of CI is to enable novel scientific discoveries through the

provision of data with high levels of availability, as well as the complex processing

capabilities required for data analysis. As a result of an increasing use of CI in scientific

activities, we anticipate that most existing and future scientific systems (i.e., software
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systems that carry out a process to obtain a result of scientific significance) will need to

handle the use of multiple data sources. Different data sources typically will be created

through different methods, and they will have different quality assessment practices

[20,21,41], as well as different format encodings [6,30]. There have been important

advances in CI toward solving the problem of integrating data from multiple sources,

as supported by the creation of data centers and virtual observatories such as GEON

[1] and EarthScope [11] that serve as data warehouses and that provide standardized

tooling and protocols for data retrieval and analysis. As scientific teams continue to

adopt CI in their practices, however, alternate ways of collaboration are surfacing that

require a decentralized approach to multiple-source data integration [24,2,13]. As a

result of a new generation of research activities that are more collaborative and multi-

disciplinary in nature, scientists will need novel ways of collecting data to facilitate

sharing, searching, and explaining data and data-derived artifacts.

In general, machines are not always successful at integrating data. For example, it

is difficult for a machine to identify that “Benjamin Franklin, Politician” is the same

“Benjamin Franklin, Inventor,” which may be documented separately in some pages

on the Web. Humans may conclude that the different“Franklin” references relate to

the same object. A machine, however, without further information, may be unable

to determine that relation. Semantic annotations are metadata (i.e., data about data)

that allow software applications to identify, for example, that an object in an annotated

dataset is the same object that has been semantically annotated in another dataset.

In the example above, through the use of semantic annotations, a software application

could verify that the two “Franklin” references relate to the same object in the following

manner: they are both semantically annotated to be of the type person; the “Franklin”

part of the term refers to a last name; “Politician” and “Inventor” are position titles;

and the “Franklin, politician in Philadelphia” was also the inventor. In general terms,

we see that the need for “semantics” is an immediate consequence of the collaborative

nature of most scientific processes and the foundation upon which CI-Miner rests.

One challenge that scientists face when working collaboratively is the need to agree

on a common and consistent terminology, especially when accessing datasets for scien-

tific analysis. For example, the term “altitude” used in two datasets may be the height

in reference to the terrain or in reference to the sea level. Scientists often interpret the

meaning through inspection. In other situations, the interpretation of terminology is

less obvious. For example, scientists coming from different organizations or fields of

expertise may use different data formats and standards to describe similar or related

observations. Semantic annotations may be used to describe dataset contents provid-

ing a systematic way for machines to verify semantic relationships between dataset

attributes, e.g., two attributes are the same, one attribute subsumes another, two at-

tributes are distinct.

Understanding the scientific process used when collaboratively working on scientific

analysis is another challenge to consider. To address this challenge, semantic annota-

tions can be used to document the steps taken to perform scientific analysis, as well as

to identify the tools and people involved in the creation and execution of the process.

These are especially significant in a scientific setting where reliability and traceability

of process results is crucial.

This article introduces the CI-Miner methodology for semantically enhancing sci-

entific processes. The methodology, which uses specific notations and is carried out

through the use of software tools, is intended for scientists who are not necessarily

computer scientists or experts in semantic technologies. Furthermore, scientists who
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use the CI-Miner methodology recognize that machines and automation should be

involved in the process of sharing, searching and explaining scientific artifacts. The

methodology considers that scientists have a comprehensive understanding about the

processes that they are interested in designing and implementing.

This article describes the methodology by explaining how the semantic annotations

added to a scientific process are used to generate explanations on how processes can be

executed, how scientific artifacts are derived from experimental data, and how scien-

tists can search, visualize, and ask questions about process results. Section 2 presents

background information about how tools, languages, and other approaches are being

used to manage and use knowledge about scientific processes. Section 3 introduces

a use case to illustrate the challenges of capturing, preserving, and using knowledge

about scientific processes. The use case and related challenges are used throughout

the article to demonstrate the CI-Miner methodology in action. Section 4 describes

the methodology along with supporting notations and tools. Section 5 revisits the

challenges presented in Section 3 to highlight the benefits of using CI-Miner. Other

case studies are also reported in this section. Conclusions and future developments are

presented in Section 6.

2 Background

The CI-Miner semantic enhancements described in this paper are comparable to sev-

eral ongoing efforts in the research areas of ontologies, workflow specifications, and

provenance. This section describes efforts in these areas, including other comprehen-

sive efforts that capture process and provenance knowledge of scientific processes.

2.1 Ontologies to Support Shared Knowledge

Ontologies support a key function of establishing a shared body of knowledge in the

form of vocabulary and relationships. A benefit of using ontologies to describe knowl-

edge is that they can be used for a wide range of purposes. For example, the application

of ontologies can range from establishing knowledge about general content on the Web,

to establishing knowledge about very specialized scientific processes.

Several advances in Semantic Web technology have made using ontologies more

feasible. The Ontology Web Language (OWL) [27], a standardized web language for

defining ontologies, allows for more interoperability between distinct scientific commu-

nities, and hence, ontology development has become a popular activity among scientific

communities.

The purpose for developing ontologies, however, varies widely among scientific com-

munities. The TAMBIS ontology [3] and the myGrid ontology [39] are examples of on-

tologies that are intended to create categorizations of concepts and relationships. For

example, TAMBIS categorizes representations of biological structures into “physical”

and “abstract.” Additionally, TAMBIS has separate concept divisions for biological

processes and biological functions. This notion of distinguishing between the possi-

ble representations of a concept helps reinforce the idea that separating concepts into

categorizations is beneficial.

The Gene Ontology (GO) [18] is a controlled vocabulary about gene information.

It is split up into three main categories, the cellular component ontology, molecular
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function ontology, and the biological process ontology. In addition to documenting

a controlled vocabulary, the purpose of the GO ontology is to document scientific

processes.

The Semantic Web for Earth and Environmental Terminology (SWEET) ontolo-

gies [37] were developed to capture knowledge about Earth System science. A group

of scientists have been capturing several thousand Earth System science terms using

the OWL ontology language. There are two main types of ontologies in SWEET: facet

and unifier ontologies. Facet ontologies deal with a particular area of Earth System sci-

ence (earth realm, non-living substances, living substances, physical processes, physical

properties, units, time, space, numeric, and data). Unifier ontologies were created to

piece together and create relationships that exist among the facet ontologies. Facet

ontologies use a hierarchical methodology in which children are specializations of their

parent nodes. The SWEET ontologies are currently being used in GEON [15] to capture

geologic processes and terms.

Tools that leverage ontologies must facilitate the creation and reuse of ontologies

allowing scientists to work together using an agreed upon vocabulary in support of

scientific research activities, e.g., creating crustal models of the Earth.

2.2 Workflow Tools to Capture Process Knowledge

Many scientific workflow tools are available and in use for modeling scientific processes.

[38] discusses various implementations using such tools within the scientific community,

as well as the challenges and benefits of using scientific workflow tools in general. One

benefit of workflow tools in general is that they support the capture and preserving of

process knowledge by allowing users to build graphical representations of a scientific

process. Typically, workflows are built in a systematic way via a user interface and the

results are reproducible artifacts that can be reused and modified.

Wings [16] is a workflow tool that allows scientists to specify the steps in a scientific

process using semantic annotations in building the workflow. Because the ultimate

goal for Wings workflows is to build an executable representation of the scientific

process, preliminary work must be done to define the semantic characteristics of the

workflow, including dataset and executable components. Having semantic descriptions

available during the design phase allows Wings to suggest and verify interoperable

components while the workflow is being developed. However, understanding semantic

and executable details of components may not be something a group of scientists

are prepared to discuss when designing a scientific workflow. In this case, requiring

semantically annotated workflow components is an added challenge at an initial stage

of workflow design. Allowing workflows to be designed at an abstract level, where

scientists are focused on the scientific process without consideration for implementation

details until a workflow has been agreed upon can avoid this distraction. Furthermore,

it would be helpful to leverage existing knowledge about data and components over

the Web as opposed to having to build them locally.

Taverna [42] allows life scientists to build executable workflows over a portal that

manages a pre-defined set of data and service components. One restriction of this portal

is that, in order to build a workflow, the portal only gives access to components for

which it has descriptions. This, similar to Wings, means that scientists need to build

a working set of component descriptions before they build a workflow. Given that this

portal is focused on life sciences, there is a variety of existing knowledge already built
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into the portal, but this is not the case for all scientific domains or for scientific teams

that choose not to use the portal. Another issue is that the Taverna portal is focused on

one scientific domain. There are cases where scientists want access to datasets available

from different sources, not just from one scientific domain, i.e., life sciences.

Furthermore, there are additional challenges to using current workflow tools. For

example, there are implementations that require modeling of steps that the scientist

performs, like instrument calibration or artifact evaluations. Most scientific workflow

tools do not support modeling human intervention within scientific processes. Another

challenge is that most scientific workflow tools lack an overall methodology for sup-

porting scientists in understanding an abstract scientific process and for refining the

information to support sharing and reuse of knowledge and scientific results.

2.3 Tools to Capture Provenance Knowledge

Scientific processes, as defined in this paper, are not necessarily captured by scientific

workflows that have executable specifications; however, there is a significant effort of

using provenance in scientific workflows that needs to be considered. For example, we

observe the use of provenance models in different workflow systems such as REDUX

[4], Taverna , Pegasus [23] and Karma [36]. These systems are based on two layers of

provenance named retrospective layer – information about workflow executions – and

prospective layer – information about workflow specifications [7]. These retrospective

layers tend to have very general concepts for representing process execution traces at

the same time that they incorporate domain-specific concepts. Domain-specific con-

cepts can be incorporated in multiple ways; for example, they can be provided by

domain-specific ontologies or hard-coded in the systems. In the case of Taverna, which

is dedicated to supporting workflows in the Bioinformatics domain, the approach is to

include related domain ontologies.

We observe a tendency of provenance systems to develop into comprehensive frame-

works for capturing and collecting process and provenance knowledge. The Zoom*User-

Views project [8] and the PrIMe methodology to develop provenance-aware applications

[29] are examples of such frameworks. Zoom*UserViews is a collaboration among sev-

eral projects being integrated into a comprehensive solution. Zoom*UserViews focuses

on capturing process knowledge in an executable workflow environment. The level of

details required for workflow specifications to be executable tends to be distracting for

scientists to understand and thus share process knowledge. Many are the benefits of

using such framework although captured process knowledge may not be at a level of

abstraction that is more convenient for scientists.

The PrIMe methodology uses software engineering practices to elicit “provenance

questions” from users, analyze data-generation applications to build data-dependency

models that are useful to answer the provenance questions, and instrument the applica-

tions with wrappers to capture provenance that can be used to answer the provenance

questions. PrIMe centers on the development/instrumentation of software applications

from a common understanding to capture provenance. The documentation of scientific

processes to promote understanding among a scientific community is not a necessary

goal of the methodology.
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3 Use Case: Collaboration Challenges for the Creation of Geophysical

Studies of Crustal Structure

This section presents a use case in which scientists collaborate to create crustal models

of the Earth and share them with others. Crustal models are used to identify the

geological structure of the Earth, e.g., the Amazon basin. The identification of such

structures is important for several reasons, including to identify mineral reserves and to

predict the degree of erosion a region can experience when it loses vegetation coverage,

i.e., forest deforestation. Related challenges are described to motivate the need for

CI-Miner.

3.1 Use Case Description

Scientific
Result

Scientist 1

Scientist 3

Analyze

How was 
this model 
created?

co
lla

b
o
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Scientist 2

Scientific 
Process

CM’

Scientific 
Process

CM”

Create based on
CM

Fig. 1 Creating and reusing a scientific result

Figure 1 depicts a collaboration in which scientists are defining a process to create a

crustal model that will be used by another scientist. In this scenario, Scientist 1 and

Scientist 2 work toward gaining a common understanding about the scientific process

CM used to create a model of a particular region of Earth. Initially, the understanding

of Scientist 1 about the Crustal Model process (CM′) varies from that of Scientist

2 (CM′′). As the development phase of the process progresses, it is expected that the

scientists will eventually reach consensus and document CM by describing the main

steps of the process along with the flow of information, where the final version of CM

is based on the original versions CM′ and CM′′. The documentation of CM is useful to

preserve the collaborative effort to reach consensus and to share this knowledge with

other scientists. For instance, Figure 1 shows that Scientist 3 was not involved in the

development of process CM and the subsequent creation of the crustal model. However,

Scientist 3 wants to understand what is being represented by the crustal model to

reuse it in her own work. Depending on the availability of the authoring scientists or
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supporting documentation about process CM, Scientist 3 may have a difficult time

evaluating the scientific result.

The scenario depicted in Figure 1 is a simplification of many scientific collabora-

tions. Complicating factors may include, among many others, scientists collaborating

remotely with limited real-time communication, and scientists with different fields of

expertise that may use different terminologies to describe scientific processes.

3.2 Use Case Challenges

PACES DEMRepo

ProfileLineDecision

Southwest
GravityData

Southwest
DigitalElevationMap

EarthScope

CreateCrossSection

Southwest
ReceiverFunctionData

Southwest
ProfileLine

CreateForwardModel

Southwest
CrossSection

CrustalModelDB

WellDataRepo

Southwest
WellData

Southwest
CrustalModel-DraftSouthwest

GravityData

Southwest
MagneticData

ExpertDecision

Southwest
CrustalModel

Southwest
CrustalModel-Draft

GeoScientist

PACES DEMRepo

CreateContourMap

Southwest
GravityData

UTMProjection
Parameters

Southwest
DigitalElevationMap

Gridding
Parameters

Southwest
ProfileLine

Southwest
BouguerAnomalyMap

ProfileLineDataset

DrawProfileLine

Fig. 2 Process to create a crustal model

Regardless of the complicating factors involved in scientific collaborations, scientists

often succeed in developing and using scientific processes to derive products like crustal

models. These successes are often hindered, however, when scaling scientific processes

for use by a wider community. Lack of mechanisms to capture, preserve, and reuse

knowledge about scientific processes are often the cause of the scalability problem.

What is more, scientists must share research results and document the processes used

to generate research results in a manner that supports their reproduction in order to be

successful. The challenges described below are critical because the task of documenting

processes requires a significant amount of effort from scientists.

Figure 2 shows the main steps and data flow of the CM process of creating a crustal

model, which is used as an example to present the challenges. The process begins

with the ProfileLineDecision step at which the scientist determines the profile line

of the model. Digital Elevation Maps (DEMs) and gravity data are two cost-effective

sources of data that can be used to determine a profile line. The right side of Figure 2

shows additional details about the ProfileLineDecision step of the process. As shown,

gravity data has to be treated to create a BouguerAnomalyMap, where input from the

geoscientist is required in addition to the gravity data. The step of analyzing DEMs
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and Bourguer Anomaly Maps to ultimately determine the location of the profile line

(DrawProfileLine) is a manual step driven by the geoscientist.

The initial steps of the CM process describe the selection of specific data sources that

scientists decided to include as part of this process. Furthermore, the process describes

the need for humans to enter input parameters, as well as the need for humans to

analyze data to make decisions.

Challenge 1 – Capturing and preserving process knowledge. Capturing and

preserving human activity in support of scientific processes in a way that offers reliable

interpretation by others is difficult. Even for parts of the process that include system-

atic activities, i.e., machine activity or machine-assisted human activity, differences in

scientific terminology across fields of expertise complicates the problem.

Continuing with the description of the CM process, the next step after determining

the profile line is to create a cross section about the crustal structure of Earth along

the profile line (CreateCrossSection in Figure 2). The cross section is comprised of

tectonic bodies represented by polygons, where each tectonic body is assigned a den-

sity value. In order to construct a credible cross section, the geoscientist needs to

research the area of interest to find data that can shed light into the properties of

the tectonic bodies. The sources of data used in the process discussed here include:

well data, receiver function data, and possibly previously created crustal models that

can serve as a basis towards creating a refined model. Because of the diversity of data

sources involved, as well as possibly conflicting results obtained from different sources,

constructing a cross section requires expert interpretation of the data.

This part of the process involves expert interpretation of various types of data

to make decisions about the model to be created. Once a scientific result has been

produced, the decisions made at this step may be required to assess its quality. Fur-

thermore, scientists wanting to verify the reproducibility of a scientific result require

access to this knowledge.

Challenge 2 – Capturing and preserving provenance knowledge. The chal-

lenge is to capture and preserve provenance knowledge about a scientific result in a way

that it can be effectively accessed and used by others.

The next step in the CM process consists of using the cross section created as the

basis to construct a forward model of gravity and magnetic data along the profile line.

The forward model yields theoretical gravity and magnetic values based on the geo-

metric structures and densities of the tectonic bodies conforming the cross section. The

cross section along with the theoretical gravity and magnetic profiles are denominated

a CrustalModel-Draft.

This part of the process involves the use of a process component that takes some

input and systematically constructs a model as output. There may be several systems

that can be used to satisfy the requirements of this process component. The scientist

may need to make a decision as to which process component is more appropriate.

Challenge 3 – Supporting the integration and interoperation of process

components. The challenge involves capturing and preserving the process-related knowl-

edge required to assess the appropriateness of the system to be used regarding its capa-

bility of sharing data with other process components.
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The last step in the process is to compare the resulting crustal model draft against

a profile of gravity and magnetic field data observations to determine the fitness level

of the theoretical values of the forward model. Based on the criteria of the geoscientist,

if the fitness level of the crustal model is good enough, the process ends by having

a geoscientist-endorsed crustal model. Otherwise, the process continues by using the

crustal model draft as the basis to conduct a refinement iteration.

Challenge 4 – Supporting comprehensive query capabilities for process com-

ponents and products. Once a scientific result has been obtained, a challenge is to

leverage the scientific process knowledge mentioned in Challenge 1, as well as the prove-

nance knowledge about the result mentioned in Challenge 2 to support advanced query

capabilities.

For example, consider the case where a scientist wants to search for crustal models

created specifically with the use of the PACES data source illustrated in Figure 2 and

where the profile line was determined by Scientist 1. Support for comprehensive

query capabilitites for process and products could address this problem.

Challenge 5 – Supporting comprehensive visualization capabilities for pro-

cess components and products. The challenge is to have access to intermediate

results along the execution of the scientific process and be able to visualize them in a

way that can shed light into the inner workings of the process.

Defining scientific processes may involve an iterative process of trial and error,

where scientists experiment with different components or steps in the process to deter-

mine an optimal choice. Visualization of intermediate results may be a critical capa-

bility for scientists to define scientific processes. Similarly, understanding the process

inner workings through visualization of intermediate results may also be valuable for

other scientists wanting to reuse the scientific process or the products created with it.

4 CI-Miner

CI-Miner offers an approach to help scientists document the knowledge behind their

research activities in the form of semantic annotations so that software applications

can use this knowledge to better support scientists’ research activities. With the use

of CI-Miner, scientists can focus on solving scientific problems without worrying about

technical nuances of developing and reusing scientific systems. This section presents the

methodology behind CI-Miner and the technology used to carry out such methodology.

4.1 Methodology

There are different types of scientific systems that range from legacy to state-of-the-

art, well-established to under-development, non-documented to well-documented. In

addition, the development of new scientific systems may be required to support novel

scientific processes. In order to support scientific processes that leverage these wide

ranges of scientific systems, scientists need to understand and be able to communi-

cate the essential functionalities of these systems. In addition, they must be able to

communicate the dependencies between these systems and the scientific processes of

interest.
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The CI-Miner methodology can be applied following an a posteriori or an a priori

approach to documentation. In an a posteriori approach (i.e., from system to documen-

tation) the intention is to analyze the inner workings of an existing scientific system

in order to create systematic documentation that can be used to understand its ap-

propriateness to a particular scientific process, and that can be used to enhance the

existing scientific system with features that show (from the perspective of the scientist)

the steps that are carried out by the scientific system to produce a scientific result.

In an a priori approach (i.e., from documentation to system) the intention is to

systematically document the scientific process from the perspective of the scientist in

order to support the development of a corresponding scientific system, or to identify ex-

isting systems that can be reused. As in the a posteriori, the systematic documentation

produced can be used to enhance the system to be developed or reused with features

that show (from the perspective of the scientist) how scientific results are produced

using the system.

It is assumed that scientists adopting CI-Miner are capable of capturing common

knowledge about the scientific process at hand. It is also assumed that once scientists

reach a common understanding about the process, that they can establish the fun-

damental concerns of carrying out the scientific process, and that they can evaluate

whether a scientific system (or parts of it) appropriately support the concerns. For

example, a geoscientist that is adopting CI-Miner and that is tasked with the scientific

endeavor of creating a crustal model (i.e., the case study of Section 3) should be able

to establish that creating a forward model of theoretical gravity values from a cross

section is a necessary step. Furthermore, the geoscientist should be able to evaluate

whether a given forward modeling software provides adequate functionality for that

step.

The methodology is presented as a series of steps that a scientist needs to accom-

plish in order to systematically document a scientific process, as well as to enhance

scientific systems that are used to support the scientific process. The order of the steps

may vary, for example, depending on whether an a posteriori or an a priori approach

is used.
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Fig. 3 Scenario about creating and reusing scientific results with CI-Miner
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Figure 3 shows the scenario presented in Section 3, along with the semantic annota-

tion resulting from using the CI-Miner methodology (the annotations are represented

by the boxes around the scientific product in the center of the figure). The scientific re-

sult is presented along with provenance semantic annotation (i.e., the Provenance box

around the scientific product) that encodes the knowledge about how that result was

created, which data sources where used in its creation, and what human decisions where

made towards creating it. Furthermore, the provenance about the scientific product is

grounded upon a documented process CM that is encoded in the form of an abstract

workflow. In CI-Miner, a scientific product of interest is called the Subject of Dis-

course (SOD) of the methodology. Further, the scientific process responsible for the

derivation of a SOD is the Process of Discourse (POD) of the methodology. Scien-

tists may use the methodology to documents multiple SODs and corresponding PODs

including PODs that can derive multiple SODs each. An assumption, however, is that a

scientist may only focus on one SOD and one POD at a time while using the CI-Miner

methodology.

In Figure 3, the fact that the Abstract Workflow box is around the Provenance

box means that there is a mapping between the provenance knowledge concepts and

the abstract workflow concepts, and that this mapping is encoded in the provenance al-

lowing one to reach the corresponding abstract workflow by inspecting the provenance.

Lastly, both the abstract workflow of CM and the provenance of the scientific result

are grounded on common terminology that is described in the form of an Ontology.

The ontology and abstract workflows are useful in the collaborative phases between

Scientist 1 and Scientist 2 to defining process P to create the scientific result. The

provenance about the scientific result is useful to Scientist 3 because the scientific

result is accompanied with additional information that describes how that scientific

result was created.

Step A: Establish a vocabulary of terms about the process of discourse. The

vocabulary defined in this step is the knowledge represented by the Ontology box in

Figure 31.

1. Identify and name the kinds of data that are used in the POD. These include things

such as datasets, input parameters, field observations, and data logs. It is important

to emphasize that the goal of this step is to identify kinds of data rather than proper

data. For example, a scientific process about the creation of a gravity contour map

may use multiple gravity datasets, where each dataset contains gravity readings

about a distinct region. In the case of these datasets, only one kind of data needs

to be identified and named – “gravity data.” The kinds of data identified in this

step are the data concepts of the POD;

2. Identify and name the SOD that is the main outcome of the POD. The SOD is

considered also a data concept of the POD. A POD may derive other products

in addition to the SOD. The scientist may choose to include or disregard these

additional data concepts;

3. Identify and name the kinds of methods that are used in the process. These methods

are process components such as software tools and human activities that take some

data as input and transform it. Similarly as before, the goal of this step is to identify

kinds of methods. For example, there may be several tools capable of computing

1 The vocabulary defined in this step may build upon other existing vocabularies documented
as ontologies. This is referred to as ontology harvesting.
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the standard deviation of a dataset attribute. In this case, only a generic method

needs to be identified and named – “standard deviation.” The kinds of methods

identified in this step are the method concepts of the scientific process;

4. When appropriate, compare the data and method concepts identified thus far to

other established vocabularies in the field of study to refine the process vocabulary,

i.e., change an identified concept name for a concept name that is more established

in the scientific community, or identify synonyms. For the case of data concepts,

harvesting concepts from other established vocabularies is useful for purposes of

data integration. For example, a data concept initially identified by a scientist as

Corrected Gravity Data may be compatible to the definition of Processed Gravity

Data used in the vocabulary endorsed by an established organization that maintains

a data repository of gravity datasets; hence, those datasets could be used in the

execution of the scientific process.

5. Identify the input and output relations between the data and method concepts of

the POD. In other words, for each method concept identified in A.3, identify the

data concepts that the method concept consumes, i.e., input data, and each data

concept that the method concept produces, i.e., output data.

Step B: Specify an abstract workflow specification for the process of dis-

course. The specification defined in this step is represented by the Abstract Workflow

box in Figure 3.

1. Model the POD as an abstract workflow in terms of the vocabulary established in

Step A. By using the data and method concepts previously established, the scien-

tist models his or her understanding of the scientific process as a set of steps, each

of which is represented by a method, and each of which requires a set of input data

and results in a set of output data. The set of steps is interconnected through data

interdependencies. For example, Figure 4 shows an abstract workflow specification

where data is represented by directed edges, and methods are represented by rectan-

gles. The ProfileLineDecision method has the data SouthwestGravityData and

SouthwestDigitalElevationMap as input, and the data SouthwestProfileLine as

output. Furthermore, the method CreateCrossSection has among its input data

concepts the concept SouthwestProfileLine that is the output of ProfileLine-

Decision, hence effectively specifying a data dependency between these two steps

in the workflow.

2. Revisit Step A to identify additional terms that may not have been identified

during the initial analysis of the POD, but that the scientist may have identified

as he (she) started to model his (her) understanding of the scientific process as an

abstract workflow.

3. Verify that the SOD identified in A.2 is encoded as the final outcomes of the

abstract workflow. Scientific products other than the SOD can be added to abstract

workflows.

It should be noted that in the Step B of the methodology, the data and method

artifacts used to build the workflow correspond to instances of the data and method

concepts defined in Step A. This means that one or more instances of a concept can

be employed in the abstract workflow. For example, Figure 4 shows two instances of

the GravityData concept, one is used as an input to ProfileLineDecision, while the

other is used as an input to ExpertDecision.
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Fig. 4 Semantic Abstract Workflow about the process of creating a crustal model. Rectan-
gles represent the steps of the process, directed edges represent data, and ovals represent data
sources and sinks. The labels are of the form xxx:yyy zzz, where xxx is the ontology that
defines the concept, yyy is the name of the concept, and zzz is the name of the of the par-
ticular instance. Optionally, the labels of some steps include another instance name between
parenthesis that represents the agent responsible to carry out that step.

The design of abstract workflow specifications can require more elaborated abstrac-

tion mechanisms. For example, the workflow diagram illustrated in Figure 2 shows an

expansion of the ProfileLineDecision rectangle, which provides additional details

about that step. The supported mechanisms to model workflows at multiple levels of

abstraction are described in [14].

Step C: Instrument scientific system to capture provenance about the sub-

ject of discourse. The knowledge about process executions captured in this step are

represented by the Provenance box in Figure 3.

1. Map the methods (or steps) identified in the abstract workflow to scientific systems

or parts of scientific systems that correspond to such steps. In the case of using the

methodology with an a posteriori approach, this mapping should be fairly straight

forward, since the terminology and abstract workflows defined in the previous steps
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are modeled based on the analysis of the scientific system. In an a priori, however,

the mapping may be more challenging since it may involve cases where a scientific

system does not exist for a corresponding step. For example, these steps may be

due to human interventions to the process that are important to be recognized as

steps in scientific processes;

2. Identify metadata to describe the processing of each step of the abstract workflow,

as well as the metadata to describe the data consumed and the data produced

by each step. For example, the CreateForwardModel step presented in Figure 4

could include metadata such as the name of the scientific system used to perform

the step, e.g., GM-SYS. The SouthwestCrossSection data consumed by that step

could include metadata such as the name of the region, e.g., Southwest;

3. For steps that are not classified as human interventions, use data annotators to

capture provenance. Data annotators use the metadata identified in Step C.2 to

annotate the provenance for the step execution. With the use of the input/output

data contained in the abstract workflow for each step of the POD, data annotator

modules are automatically generated for each step in the form of template code that

captures the inputs used when a step is initiated, as well as the outputs resulting

when a step is finished;

4. [Optional] For steps that are human interventions, consider the creation of tools

that would enable scientists to document their interventions;

5. Inspect the abstract workflow specification for properties that dictate when prove-

nance should be logged. For example, when intermediate artifacts do not persist

during execution of the workflow, an in-processing approach must be used to cap-

ture the provenance for intermediate artifacts and, if needed, to capture the artifacts

themselves before they are expunged from the process;

6. Modify the system coordinating agent to invoke data annotators. This implies that

the invocation of data annotators need to occur at precise moments in execution,

thus the coordinating agent of the data annotators is also the coordinating agent of

the concrete workflow. Deciding where to add these calls to a workflow requires that

a user understands specifics of a concrete workflow, such as which parts correspond

to the coordination of process (i.e., control flow) and which parts correspond to the

execution of workflow activities; for it is this knowledge that is needed to instrument

the workflow;

7. Execute the scientific process;

8. If a workflow does not delete intermediate results, or if users are unable to modify

a workflow, then a non-invasive post-processing annotation can be used. In this

case, knowing about workflow how/when/where workflow activities are invoked is

less important than knowing specific properties of data output from the activities.

This is because post-processing annotators search for the existence of certain types

and properties of data to clue in that a particular workflow activity was executed.

For example, if an annotator was configured to capture provenance associated with

the crustal model activity CreateForwardModel it would search the file system for

the existence of a SouthwestCrossSection, which would provide evidence that the

CreateCrossSection was executed;

9. [Optional] In the absence of a comprehensive search capability for semantic annota-

tions published on the Web, i.e., a search engine that can locate and index semantic

annotations, identify the location where provenance documents are initially stored.

This step may be also required if standard search capabilities are insufficient for

selecting provenance-related search criteria;
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10. [Optional] In the absence of a comprehensive search capability for semantic annota-

tions published on the Web, create a routine for crawling the provenance documents

and for storing them in a triple-store database.

Abstract
Workflow

Scientific
Result

Workflow-Driven 
Ontology

Scientific
Result

Workflow-Driven 
Ontology

Scientific
Result

Workflow-Driven 
Ontology

Abstract
Workflow

Provenance

(A) (B) (C)

Fig. 5 Outcomes after each step of the methodology. (A) After Step A the outcome is a
workflow-driven ontology that captures concepts related to the process of discourse (POD).
(B) After Step B the outcome is an abstract workflow of the POD to create the subject of
discourse (SOD), where the abstract workflow is grounded on the concepts defined in the
ontology of Step A. (C) After Step C the outcome is a searchable provenance artifact that is
linked to the SOD.

Figure 5 shows the outcomes that a scientist obtains after each of the phases of the

methodology. After Step A the scientist has established a basic vocabulary to talk about

the POD. This vocabulary is documented in the form of an ontology, i.e., a workflow-

driven ontology. After Step B the scientist has created an abstract description of the

POD in terms of the vocabulary defined in the previous step. After Step C the scientist

has a collection of provenance documents for each execution of the POD, where each

of these provenance documents is linked to its corresponding SOD.

The next section describes how these steps are accomplished with the use of ontol-

ogy encoding, abstract workflow specification, and provenance, as well as with the use

of tools for managing these encodings.

4.2 Implementation – Supporting tools and notations

This section explains how CI-Miner is implemented through the use of a collection of

tools and notations.

4.2.1 Ontology Support

In computer science, ontologies have gained a lot of attention since the Semantic Web

initiative was revealed in 2001 [5]. Ontologies are artifacts used for capturing knowledge

about a given domain in terms of concepts and relationships among concepts. The way

ontologies are created and used is driven by their purpose of use. In particular, Guarino
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[19] suggested the classification of ontologies according to their level of dependence to

a particular task or point of view.

In the CI-Miner case, the focus is on the use of task ontologies for capturing knowl-

edge about a scientific discipline through the use of process-related concepts. This

approach is called workflow-driven ontologies (WDOs) [35]. The two main classes of

WDO upper-level ontology2 are Data and Method. The Data class is representative of

the data components of a scientific process. These can be things such datasets, doc-

uments, instrument readings, input parameters, maps, and graphs. The Method class

is representative of discrete activities involved in the scientific process that transform

the data components. The intention of WDOs is to allow scientists to capture process-

related concepts by extending the hierarchies of Data and Method (Steps A.1 and A.3

of the methodology). Furthermore, Data and Method classes can be related through

isInputTo and isOutputOf relations to capture their data-flow interdependencies with

respect to a scientific process (Step 5 of the methodology).

wdo:Data

MagneticData
GravityData
DigitalElevationMap

WellData

AssessCrustalModel

DetermineProfileLine

CrossSection

ProfileLine

ReceiverFunctionData

CreateCrossSection
CreateForwardModel

CrustalModel

FieldData

wdo:Method
ExperimentalData

Thing

Fig. 6 Crustal Modeling Workflow-Driven Ontology

Figure 6 shows a taxonomic representation fragment of the Crustal Modeling

Workflow-Driven Ontology (cmwdo). As shown, cmwdo is a WDO because the taxon-

omy is grounded on the wdo:Data and wdo:Method classes. According to cmwdo, both

DigitalElevationMap and GravityData are FieldData that may be used in a scientific

process (because FieldData is of type wdo:Data). Moreover, in terms of process func-

tionalities, cmwdo shows that a scientific process used to develop crustal models, i.e., CM,

may have a step called CreateForwardModel, since it is a subclass of wdo:Method. As

cmwdo shows us, these are the terms that geoscientists may use to describe the process

of building crustal models. It is important to note that the description of a crustal

modeling scientific process is not in cmwdo: the ontology does not know how many data

instances and method instances are needed to implement the process and how these

data instances and method instances are connected to produce crustal models. WDO-

It!3 [32] is a tool that enables scientists to create workflow-driven ontologies for their

area of interest.

4.2.2 Workflow Support

From a scientist’s perspective, processes can be generalized as graphical structures

containing the following: nodes representing discrete activities, and directed edges rep-

resenting data flow between those activities. Activities connected through edges effec-

2 http://trust.utep.edu/1.0/wdo.owl
3 WDO-It! tool available at http://trust.utep.edu/wdo/downloads/
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tively determine data dependencies between the activities. Information fed into the

process is provided by data sources, and information generated by the process may

be stored in a data sink. Traversing the graph from its initial data sources to its fi-

nal data sinks simulates the action of carrying out a complex process conformed of

simpler activities. To deploy such a representation of a process as an automated or

semi-automated system, additional control flow information is necessary to determine

the rules that guide the graph traversal.

According to the CI-Miner approach, scientific process specifications can be cap-

tured by semantic abstract workflows (SAWs). SAWs are artifacts capable of describing

the process at a level of detail that is adequate for scientists. The term “semantic” refers

to the fact that nodes correspond to instances of wdo:Method and edges correspond to

instances of wdo:Data, as captured in the WDO used to create a SAW. “Abstract”

refers to the fact that the captured process lacks additional constructs necessary to

produce automated systems that, for example, would implement the modeled process

as a scientific workflow. In this sense, SAWs are not committed to be executable work-

flow specifications.

Figure 4 shows an example of the graphical notation of SAWs for our use case.

Instances of wdo:Data are represented by directed edges and instances of wdo:Method

are represented by rectangles. Data and methods instances are labeled with a name

given by the scientist and prefixed with the name of their corresponding user-defined

WDO class. SAW’s Sources and Sinks are introduced in the graphical notation of SAWs

as a bootstrapping mechanism to indicate the starting and ending points of a process,

and these are represented by ovals. Sources and Sinks are also labeled with the name

of their corresponding class defined in the provenance component of the Proof Markup

Language (PML-P) ontology discussed below.

WDO-It! can be used to build SAWs from WDOs (Step B.1 of the methodology).

By dragging and dropping WDO data and methods inside a graphical workspace,

scientists can instantiate methods and use data to connect methods. SAWs do not

have the capability to model control flow. This may be beneficial in that it removes a

layer of complexity for the scientist. For scientists who are more engaged in the design

process, however, this restriction may introduce a level of frustration, for instance, to

include information such as the number of times a method iterates or the conditions for

the execution of methods. Despite these limitations, the benefits of SAWs lay in their

simplicity to describe scientific processes, as well as to include additional information

related to provenance as described in the following section.

4.2.3 Provenance Support

Once a SAW has been authored, e.g., using the WDO-It! tool, it can be used to drive

the generation of “data annotators” that are modules designed to capture provenance

associated with workflow activities (Step C.3 of the methodology). Executing a set of

data annotators corresponding to a single SAW is similar to executing a workflow in

the sense that some coordinating agent is needed for both the synchronized invocation

of each data annotator and for the message passing facilities needed for communicating

between them.

Data annotators are built for the main purpose of logging provenance; they are

not allowed to transform data belonging to the scientific process of interest. Therefore,

data annotators use provenance as the exclusive language for communication (i.e., the

inputs and outputs of data annotators are provenance elements). When using data
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annotators, provenance is transformed by each annotator by always enhancing the

input provenance trace with more information.

The provenance captured in CI-Miner is encoded in the Proof Markup Language

(PML) [28,31], which is designed to support distributed provenance; thus, data an-

notators can too be distributed along with any remote services that are invoked by a

workflow. This is possible because the inputs to data annotators, which are PML node

sets associated with executions of the dependent workflow activities, are referenced by

URIs. This is convenient because often times complex scientific processes are modu-

larized and controlled by a master script that in turn makes calls to services which

may or may not be located remotely. In these cases, the agent coordinating the data

annotators does not need to know about provenance as a whole, but only encounters

the URIs of intermediate provenance elements.

The goal of capturing provenance about data is to support the explanation of how

data is created or derived, e.g., which sources were used, who encoded the data, and

more. As shown in Figure 7, the PML ontology defines primitive concepts and relations

for representing provenance about data. PML is divided into two modules [25]4:

IdentifiedThing
Information
Source

Agent

Document
Organization
Person
Sensor
Software

Inference Engine
Web Service

Database
Data Set
Ontology
Publication
Website

Thing

PML Ontology

NodeSet (hasConclusion, isConsequentOf)

InferenceStep (hasAntecedent)

Thing
PMLJ ModulePMLP Module

Fig. 7 A simplified view of the PML Ontology

– The justification module5 (PML-J) defines concepts and relations to represent de-

pendencies between identifiable things;

– The provenance module6 (PML-P) defines concepts to represent identifiable things

from the real world that are useful to determine data lineage. For example, sources

such as organization, person, agent, service, and others are included in PML-P.

The goal of the justification ontology is to provide the concepts and relations used

to encode the information manipulation steps used to derive a conclusion that in a

scientific process is often a dataset. A justification requires concepts for representing

conclusions, conclusion antecedents, and the information manipulation steps used to

transform/derive conclusions from antecedents. Although these terms stem from the

theorem proving community, they can be mapped to more familiar workflow terms;

4 The ontology includes a trust relation module that is not used by CI-Miner.
5 http://inference-web.org/2.0/pml-justification.owl
6 http://inference-web.org/2.0/pml-provenance.owl
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for example, conclusions refer to intermediate data and antecedents refer to the in-

puts of some processing step. The justification vocabulary has two main concepts:

pmlj:NodeSet and pmlj:InferenceStep. A pmlj:NodeSet includes structure for rep-

resenting a conclusion and a set of alternative pmlj:InferenceSteps each of which

provides a distinct justification for the conclusion. The term pmlj:NodeSet is chosen

because it captures the notion of a set of nodes (with inference steps) from one or many

proof trees deriving the same conclusion. Every pmlj:NodeSet has exactly one unique

identifier that is web-addressable, i.e., a URI.

Figure 8 outlines a PML node set capturing the processing step implemented by

an instance of cmwdo:CreateForwardModel in Figure 4. The output of cmwdo:Create-

ForwardModel is an instance of cmwdo:CrustalModel called SouthwestCrustalModel-

-Draft, and this data is captured in the Conclusion element as an instance of pmlp:-

Information, as described below. Additionally, the inputs consumed by cmwdo:Create-

ForwardModel are captured as Antecedents of the node set’s inference step.
file:///C|/Documents%20and%20Settings/leonardo/Desktop/nodeset-example.txt

<rdf:RDF>
    <NodeSet rdf:about="http://.../CrustalModeling.owl#answer">
        <hasConclusion>
            <pmlp:Information>
                <pmlp:hasURL rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
                    http://.../CrustalModel.dat
                </pmlp:hasURL>
                <pmlp:hasFormat rdf:resource="http://.../registry/FMT/CrustalModel.owl#model"/>
            </pmlp:Information>
        </hasConclusion>
        <isConsequentOf>
            <InferenceStep>
                <hasInferenceEngine rdf:resource="http://.../pmlp/FwdModelSoftware.owl#GM_SYS"/>
                <hasInferenceRule rdf:resource="http://.../pmlp/CrustalModeling.owl#CreateForwardModel"/>
                <hasAntecedentList>
                    <NodeSetList>
                        <ds:first rdf:resource="http://.../proof/CrossSection.owl#answer"/>
                        <ds:next rdf:resource="http://.../proof/GravityData.owl#answer"/>
                        <ds:last rdf:resource="http://.../proof/MagneticData.owl#answer"/>
                    </NodeSetList>
                </hasAntecedentList>
            </InferenceStep>
        </isConsequentOf>
    </NodeSet>
</rdf:RDF>

file:///C|/Documents%20and%20Settings/leonardo/Desktop/nodeset-example.txt [9/2/2009 9:50:54 AM]

Fig. 8 Example of a provenance encoding in PML

Figure 7 shows that the foundational concept in PML-P is pmlp:IdentifiedThing,

which refers to an entity in the real world. These entities have attributes that are use-

ful for provenance such as name, description, create date-time, authors, and owner.

For example, in Figure 8 the node set is adorned with PML-P instances that ef-

fectively convey that this node set corresponds to an execution of cmwdo:Create-

ForwardModel. The PML-P inference engine instance is named GM-SYS to indicate

that this captured step is in fact an execution of a software system called “GM-

SYS”. Furthermore, the PML-P inference rule instance describes the specific step,

(e.g., CreateForwardModel) in terms of what the step does and what organization is

responsible for this particular implementation of the algorithm. PML includes two key

subclasses of pmlp:IdentifiedThing motivated by provenance representational con-
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cerns: pmlp:Information and pmlp:Source. The concept pmlp:Information supports

references to information at various levels of granularity and structure. The concept

pmlp:Source refers to an information container, and it is often used to refer to all the

information from the container. A pmlp:Source is further specialized into a pmlp:Agent

or a pmlp:Document, and a document can be a database, a dataset, and a publication

among others. PML-P provides a simple, but extensible taxonomy of sources.

5 CI-Miner Benefits and Discussion

To demonstrate some of the benefits of our methodology, we discuss the use of CI-Miner

in a collection of case studies. To facilitate this discussion, we use the five challenges

identified in our use case.

5.1 Process Knowledge Preservation

The main goal for steps A and B of the CI-Miner process is to generate documentation

of a scientific process in a form that can be understood by a diverse group of scientists.

We have implemented the CI-Miner process in various projects and, as a result, have

created accompanying ontologies and abstract workflows representing process knowl-

edge. Many of these implementations involve legacy systems, software systems already

implemented to perform the automated steps of scientific research activities. Initially,

we found that many of the discussions of the processes behind legacy-based systems

focused on source code. These discussions occurred between a scientific team of non-

programmers and a few programmers and the discussions would often break down.

At times, there was little understanding as to what the code was doing, regardless of

a scientists exposure to the overall process. Discussing abstract workflows built from

common terminology avoided the distractions resulting from discussions of variables,

source code and program syntax. One interesting observation was when two scientists,

who had been working together for years, had fundamental disagreements as to how

a process worked. By creating reproducible representations of scientific activities, we

were able to facilitate agreement in process, addressing Challenge 1 in the use case.

In this case, the benefit of creating abstract workflows was a consistent understanding

of a single process understood in two different ways. In many scientific processes, it

was necessary to document both the steps performed by software and those performed

by a scientist. Some workflow tools will not allow for such differentiation, e.g., all steps

must be machine executable. Working at an abstract level within a workflow allowed

the capture of scientific process knowledge, regardless of implementation details. One

final benefit of the CI-Miner step to capture process knowledge comes from using se-

mantically annotated technology. Many projects, with which we worked, needed to

integrate datasets available over the Web. For example, the Virtual Solar-Terrestrial

Observatory (VSTO) ontology 7 is being used by one project to describe a process for

capturing images of the sun. By using ontologies to describe inputs, we were able to har-

vest the terminology within the VSTO ontology and use it in the project’s workflows.

In this way, the workflows reuse terminology from a trusted and accepted source.

7 http://dataportal.ucar.edu/schemas/vsto.owl
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5.2 Provenance Knowledge Preservation

An important benefit to building abstract workflows is the direction workflows give

to provenance preservation. Using the technologies available to CI-Miner, in particu-

lar PML, we were able to build deposits of provenance information at data sources.

For example, PML-P nodes were made to annotate the characteristics of data reading

instruments and the nodes were published for access over the Web. Whenever data

is accessed from these instruments, the related PML-P node provides an explanation.

Within the semantically annotated abstract workflows of CI-Miner, source information

can be shown as inputs and outputs of components. With specific characteristics about

the source, we are able to understand workflow components within the context of the

workflow, not just at the distributed web location. Given that the workflow captures

the steps within the process and has access to knowledge about that the process, it

can automatically generate a script that would direct the provenance capture from in-

puts and outputs and to build data annotators. The annotators facilitate the collection

of source information when the scientific process is actually executed. By following

the CI-Miner methodology and using the combination of tools available, e.g., abstract

workflows, source information and data annotators, a significant amount of provenance

has been built into the real-time collection of data for a scientific process involving so-

lar physics. In an environmental study, we needed to annotate data that was produced

days, weeks, and even years ago. As a result, there were thousands of data files so

a manual approach to annotating them was unrealistic. To help with this challenge,

the workflow was used to understand the overall process of capturing the data, and

post-processing annotators were built to annotate the data. The overall result, whether

using data annotators or post-processing annotators, is the aggregation of provenance

to the scientific artifacts. Moreover, the preserved provenance is in a structured for-

mat, machine readable and available for access over the Web, resulting in searchable

descriptions of data that can be used by other scientists to understand the results. The

accomplishments described above address Challenge 2 in the use case.

5.3 Data Integration and Interoperability Capabilities

Data integration is facilitated by WDOs, SAWs, and ontologies harvested by WDOs.

The data hierarchy in a WDO provides an explicit way of annotating whether the

content of two data sets have the same kind of measurements, and SAWs identify

where these datasets are used in the process. For example, Figure 4 shows the CM

use of a dataset called SouthwestGravityData, which is of type cmwdo:GravityData.

This means that the CM process can be repeated for other regions of the planet as

long as the dataset used in this step of the process is about gravity measurements in

the new region of interest and the dataset is of type cmwdo:GravityData. Furthermore,

let say that a scientist decides to produce crustal models for an extensive area of the

U.S., e.g., the western part of the U.S. In this case, the ProfileLineDecision step in

the CM process could be based on a new dataset of type cmwdo:GravityData derived

from the merging of the content of SouthwestGravityData and NorthwestGravityData

datasets.

A more complex data integration scenario is when datasets are not of the same

type, but still need to be integrated. For instance, according to Figure 6, cmwdo:-

GravityData is a specialization of cmwdo:FieldData. To execute the ProfileLine-
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Decision step for the western part of the U.S., let’s assume that the Northwest-

GravityData is of type cmwdo:FieldData, but not of type cmwdo:GravityData. This

means that some of the attributes in the two datasets are the same, which is why both

datasets are of type cmwdo:FieldData), and others are different, which is why only

SouthwestGravityData is of type In this case, data integration may be accomplished

by inspecting the specifications of the fields of these datasets. These specifications may

be available in the ontologies describing these datasets and the ontologies harvested

by WDO. Thus, through these inspections, tools can perform semantic matching [17]

to verify how terms are pair-wise related and if the datasets can be combined. If such

a description is unavailable, scientists would need to analyze the datasets manually

and determine how their concepts match semantically. Even in this situation, there

is still benefit in using WDOs and SAWs to document scientists’ findings that would

enable future data integration efforts. The semantic enhancements described above

are essential steps towards a systematic data integration approach based on CI-Miner.

These enhancements address Challenge 3 in the use case.

In terms of interoperability, OWL is the language on top of which WDOs, SAWs

and PML documents are built. Using OWL terminology, WDOs are OWL documents

that capture ontological classes and relations, while SAWs are OWL documents that

capture knowledge based on the knowledge captured in the WDOs. Hence SAWs do not

contain class or property definitions, but instead, include only instances of the classes

and properties defined in WDOs. With this knowledge about OWL, we can return to

the use case.

5.4 Search and Query Capabilities

Many computationally expensive processes are often repeated multiple times because

of the difficulty scientists may have to search for process results whether they are

published on the Web or stored in a local file-system. For instance, the scientist using

the crustal modeling SAW needs to decide a profile line for the southwest part of the

United States. To make this decision, according to Figure 2, the scientist may need to

use a BouguerAnomalyMap about the southwest region of the U.S. However, if Bouguer

Anomaly maps are published on the Web, chances are that no search engines can locate

them just with the use of keywords.

Without the use of semantic annotation, search engines are limited on how much

knowledge they are capable of extracting out of ordinary Web content [26], i.e., non-

annotated web content. If Bouguer Anomaly maps are semantically annotated, for

example, with the use of CI-Miner, and published in a place that can be indexed by a

semantic-aware search engine such as IWSearch [33] and Swoogle [10], then the scientist

may be able to locate the appropriate map.

The characteristics of the request in the above example are: The object is a Bouguer

Anomaly map; it is derived from gravity data; and the gravity data is from the south-

west region of the U.S. These are all properties that can be verified against the map

provenance. To explain how they are verified, we need to understand the difference

between how IWSearch and general-purpose search engines work.

– Looking for PML documents. Like other search engines, IWSearch crawls the Web

looking for documents to be indexes. However, IWSearch can differentiate Web

pages that are PML documents from Web pages that are not PML documents.
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For the PML documents, IWSearch can get their content and use to populate a

triple-store database that is capable of answering SPARQL queries [34]. This means

that internally, IWSearch can consider the RDF triples inside PML documents and

use SPARQL to query for specific properties about selected PML documents. For

example, in a trivial way, we can use SPARQL to list responses for the Create-

ContourMap method in CM. In SPARQL terms, we would query for everything that

is of type NodeSet and from these node sets we further query their InferenceSteps

that uses the method CreateContourMap.

– Select PML documents about Bouguer Anomaly maps. A first SPARQL query would

ask for PML documents that are node sets which have conclusions of the type

BouguerAnomalyMap, e.g., the document in Figure 8). This would reduce drastically

the number of PML documents that have the potential to answer the scientist’s

request.

– Select Bouguer Anomaly maps derived from gravity data. From this pool of Bouguer

Anomaly maps, IWSearch performs a more complex and expensive combination of

SPARQL queries that would use the relationships between node sets (the has-

Antecedents property inside of inference steps) to traverse down the PML proof

trace of each map and identify those maps that were derived from datasets of type

GravityData. In this case, these gravity datasets are also the conclusions of other

node sets reached in the process of traversing down the derivation paths of each

Bouguer Anomaly map. This is a step that can be pre-processed for each PML

node set added to the triple-store database.

– Select gravity data from the southwest region of the U.S. Finally, by inspecting the

node sets holding the datasets of type GravityData, IWSearch can verify which

ones are from the southwest region of the U.S. by verifying the parameter values

used to retrieve the gravity data from the PACES database.

As one can see, semantic annotation enables the task of searching for scientific

data and other products. Without the use of semantic annotations in the Bouguer

Anomaly map example, it would be much harder if even possible for a scientist to

locate the map of interest. This query capability addresses the Challenge 4 in the use

case. We claim that CI-Miner addresses Challenge 4 because the semantic annotations

used to represent abstract workflows and provenance, i.e., WDOs, SAWs, and PML

documents, are encoded in OWL and based on Web technologies that include URLs

and namespaces. Further, CI-Miner uses novel approaches for searching and querying

the content of these semantic annotations, e.g., triple-store technologies may be used to

query WDOs, SAWs, and PML. In addition to the query capabilities mentioned above,

it is worth mentioning that the queries considered in the CM use case are defined

in terms of scientists’ terminology: the BouguerAnomalyMap was originally defined in

a workflow-driven ontology like the one presented in Figure 6 and developed by the

scientists [22].

5.5 Visualization Capabilities

The capability of visualizing process components and results (Challenge 5 in our use

case), whether the results are intermediate or final, is as important as the capability of

searching for these results. For example, for the gravity datasets provided by PACES

in Figure 2, we can consider the use of three visualizations: textual view, plot view,
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Fig. 9 Different viewers for gravity data sets.

and XMDV view. The default textual view is a table; the raw ASCII result from

gravity database. The location plot viewer provides a 2D plot of the gravity reading

in terms of latitude and longitude. XMDV, on the other hand, provides a parallel

coordinates view, a technique pioneered in the 1970’s, which has been applied to a

diverse set of multidimensional problems [40]. Figure 9 shows a pop-up of the 2D plot

and XMDV visualizations in their respective viewer windows. Upon selecting a node set

in a gravity data derivation trace, provenance visualization tools like ProbeIt!8 [9] are

able to determine, based on a semantic description of the output data, which viewers

are appropriate. This is similar to a Web browser scenario in which transmitted data

is tagged with a MIME-TYPE that is associated with a particular browser plug-in.

These visualization tools should be flexible enough to support a wide array of scientific

conclusion formats just as Web browsers can be configured to handle any kind of data,

but also leverage any semantic descriptions of the data. For example, XMDV is a

viewer suited to any n-dimensional data; the data rendered by XMDV need only be in

a basic ASCII tabular format, as shown on the right hand side of Figure 9, with a few

additional headers. Because gravity datasets are retrieved in an ASCII tabular format,

XMDV can be used to visualize them. However, this kind of data is also semantically

defined as being of type GravityData, in which case provenance visualization tools

need to be configured to invoke the more appropriate 2D spatial viewer, as shown in

the center of Figure 9. The semantic capabilities provided by these tools viewer need

to compliment the MIME tables used in typical Web browsers, which only indicate the

format or syntax of the data.

Semantic annotations captured by CI-Miner enable the task of visualizing scientific

data and other products. Without the use of semantic annotations to identify the kind

of data available in the gravity datasets in the example above, it would be difficult for

scientists first to have access to these intermediate results and second to know which

tool to use to visualize these results. This visualization capability corresponds to the

Challenge 5 in our use case. We claim that CI-Miner addresses Challenge 5 because of

the following: the SAW specification includes a visual notation used to present abstract

workflows to scientists; tools like Probe-It provide browsing capabilities for PML at the

8 ProbeIt! tool available at http://trust.utep.edu/probeit/applet/
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same time that it reuses conventional and state-of-the-art visualization capabilities to

support the visualization and data analysis of scientific data and their provenance.

6 Conclusions and Future Work

This article introduces CI-Miner methodology for semantically enhancing scientific

processes. The steps in the methodology take into consideration the need for scientists

to be fully involved in semantic enhancements of scientific processes, whether processes

are entirely performed by humans, executed by machines, or a combination. In CI-

Miner, scientists can create domain-specific terminologies encoded as workflow-driven

ontologies and can use these ontologies to support the specification of both abstract

workflows about scientific processes and provenance about the outcome of scientific

process executions. One of the goals of CI-Miner is to capture and preserve knowledge

about scientific processes.

The use of both abstract workflows and provenance to annotate scientific data

and products allow semantic-aware tools to support complex tasks, which has been

identified as a challenge for conventional scientific processes. Semantic data integration

allows scientists and semantic-enabled tools to figure out whether two datasets have

the same type and, if not, whether two attributes in distinct are of the same type. Data

integration processing leverages knowledge encoded in ontologies (including workflow-

driven ontologies) and abstract workflows. Semantic search leverages the knowledge

encode in provenance allowing scientists to look for specific components of scientific

processes. Semantic visualization allows scientists to visually analyze and understand

many components of scientific processes, including diagrams representing the process

specifications. The approach supports multiple visualization strategies for each process

result. The methodology has the potential of enabling scientific communities to take

advantage of an entire new generation of semantically-enabled tools and services that

are under development by industry and academic organizations.

CI-Miner was originally designed to enhance scientific processes to support interdis-

ciplinary projects at UTEP’s CyberShARE Center9 that required dealing with multiple

scientific processes that are at a different level of maturity, applied to a distinct sci-

entific field, i.e., geoscience, environmental sciences and computational mathematics,

and supported by a distinct community. CI-Miner has been a collective effort among

the communities directly involved with CyberShARE and with members of the Mauna

Loa Solar Observatory at the National Center of Atmospheric Research. One of the

most important results of CI-Miner to date is that its development has brought distinct

communities closer, making possible for them to collaborate and share resources.
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