A Proof Markup Language for Semantic Web
Services

Paulo Pinheiro da Silva Deborah L. McGuinness
Richard Fikes

Knowledge Systems Laboratory, Stanford University
Stanford, CA 94305, USA.
e-mail: {pp,dlm,fikes}@ksl.stanford.edu

Abstract

Web services propose that they provide the means for remote inter-
operable access of components and software systems. However, success-
ful inter-operation between components that do anything more than
the simplest information retrieval is dependent upon those components
having a shared understanding of the results that have passed between
them. In this paper, we address the issue of understanding and trust-
ing results generated by web services. We introduce a proof markup
language (PML) that provides an interlingua for capturing the informa-
tion agents need to understand results and to justify why they should
believe the results. We also introduce our Inference Web infrastruc-
ture that uses PML as the foundation for providing explanations of web
services to end users. We additionally show how PML is critical for
and provides the foundation for hybrid reasoning. Our contributions
in this paper focus on technological foundations for capturing formal
representations of term meaning and justification descriptions thereby
facilitating trust and reuse of answers from web agents.

1 Introduction

Web services are expected to make use of automated reasoners and retrieval
engines to perform their services. In order for Semantic Web services to
explain their results, they need to be able to generate justifications of their
results in an exchangeable, combinable format. We refer to a sequential
trace of information manipulations used to generate an answer as a proof of
the answer. These proofs (possibly provided by multiple question answer-
ing systems) may be combined to form proofs of compound results. Proofs



may be abstracted, summarized, or transformed into more abbreviated com-
plex aspects or more understandable justifications for the answers. For the
purposes of this paper, we will view an explanation as any transformation
(abstraction or summaries included) of a proof that makes it more under-
standable to users.

In order to provide the foundation for proof manipulations - presenta-
tions, abstractions, summaries, transformations, and explanations - we in-
troduce a proof markup language as a proof representation interlingua. This
article introduces the Proof Markup Language (PML) that can be used as
follows:

e To represent different kinds of proofs ranging from formal natural de-
duction derivations to proof traces typically produced by highly opti-
mized theorem provers. These representations are aimed at services
that leverage inference.

e To represent proofs resulting from services aimed at information re-
trieval or entity extraction. These proofs may provide information
concerning sources and extractors use;

e To represent different kinds of explanations varying from summaries
of assertions or knowledge sources used to derive an answer to a more
elaborate abstraction of a derivation path;

e To support the exchange of proof information among automated rea-
soners in hybrid reasoning systems.

The rest of the article is organized as follows. Section 2 describes the
Inference Web that is a Semantic Web infrastructure for explanations. Sec-
tion 3 introduces the PML specification. Section 4 demonstrates practical
uses of the PML format for explanations and hybrid reasoning. Section 5
presents related work. Section 6 concludes the article and describes future
work.

2 Inference Web

Inference Web [9] (IW) is a framework for explaining answers produced
from the Semantic Web Services. Inference Web provides access to proofs
and explanations published anywhere on the Web. It provides a framework
and tools for building, maintaining, presenting, exchanging, combining, an-
notating, filtering, comparing, and rendering proofs and proof fragments.
Inference Web is composed of the following portions:



e Specifications: Question answering components may generate answers
and justifications for their answers using the PML format described
in this article. PML provides a proof interlingua representation. In-
ference Web includes a specification of PML in DAML4-OIL [2] and
OWL [11].

e Data: PML documents published on the Web become a portion of
the Inference Web data used when browsing and summarization tools
are presenting explanations, summaries, and other viewing options to
users. Inference Web also processes the PML documents to identify
when portions of them may be combined to form more complex con-
clusions. IW also uses rewrite rules to transform the proofs into more
understandable explanations. The IW data includes the PML proofs
and explanations along with a registry of information used for proof
presentation. The registry, called IWBase, is a distributed repository
of meta-data including sources, inference engines and inference rules.
This information is used to provide follow-up information concerning
the elements presented in proofs and explanations.

e Tools and Services: Inference Web includes a tool suite including a
browser for displaying proofs and explanations, an explainer for ab-
stracting PML proofs into PML explanations, a registrar for submit-
ting and maintaining the evolving IWBase entries, a proof generation
service for facilitating the creation of PML proofs by inference en-
gines, and the IWBase registry for storing information used in proofs
and explanations.

The IWBase [10] (formerly known as the IW Registry) is an interconnec-
tion of distributed repositories of meta-information relevant to proofs and
explanations, including knowledge provenance information [13]. Every en-
try in these repositories is an instance of an IWBase concept as described
in Section 3.3. For example, Knowledge Source is an IWBase concept that
is useful for entries such as ontologies, knowledge bases, thesauri, etc. The
knowledge source entry for an ontology describes stores of assertions about
the ontology such as its original creator(s), date of creation, data of last
update, version, URL (for browsing), description in English, etc. IWBase’s
provenance information is expanding on an as-needed basis driven by appli-
cation demands.

Every entry has a URI and is stored both as a file written in OWL and
as a set of tuples in a database. IWBase files are mainly used by PML proofs
to annotate their content as described throughout this article.



3 PML Specification

PML classes are OWL classes (thus they are subclasses of owl:Class. They
are used to build OWL documents representing both proofs and proof prove-
nance information. Thus, PML concepts can be considered to be either proof
level concepts or provenance level concepts. Primitive types mentioned in
the article are from the XML schema specification!.

3.1 Proof Level Concepts

NodeSet?, InferenceStep, and Expression are the main constructs of proofs
and explanations.

A NodeSet represents a step in a proof whose conclusion is justified by
any of a set of inference steps associated with the NodeSet. PML adopts
the term “node set” since each instance of NodeSet can be viewed as a set
of nodes gathered from one or more proof trees having the same conclusion.

e The URI? of a node set is the unique identifier of the node set. Every
node set has one well-formed URI.

e The Conclusion of a node set represents the expression concluded by
the proof step. Every node set has one conclusion, and a conclusion
of a node set is of type Expression.

e The ExpressionLanguage of a node set is the language in which the
conclusion is represented. Every node set has one expression language,
and that expression language is of type ExpressionLanguage.

e FEach InferenceStep of a node set represents an application of an
inference rule that justifies the node set’s conclusion. Every node set
has at least one inference step, and each inference step of a node set
is of type InferenceStep.

An InferenceStep represents a justification for the conclusion of a node
set. Inference steps are anonymous OWL classes defined within node sets.
For this reason, it is assumed that applications handling PML proofs are able
to identify the node set of a inference step. Also for this reason, inference
steps have no URIs.

"http://www.w3.org/TR/xmlschema-2/

2PML concept names are typed in sans serif style and PML attribute names are typed
in courier style.

3http://www.ietf.org/rfc/rfc2396.txt



e The Rule of an inference step is the rule applied to produce the con-
clusion. Every inference step has one rule, and that rule is of type
InferenceRule (see Section 3.3.3). Rules are in general registered in the
IWBase by engine developers. However, PML specifies three special
instances of rules: Assumption, DirectAssertion, and UnregisteredRule.
When specified in an inference step, the Assumption rule says that the
conclusion in the node set is an explicit assumption.

e The Antecedents of an inference step is a sequence of node sets each of
whose conclusions is a premise of the application of the inference step’s
rule. The sequence can contain any number of node sets including
none. The fact that the premises are ordered may be relevant for
some rules such as ordered resolution [14] that uses the order to match
premises with the schemas of the associated rule. For other rules such
as modus ponens, the order of the premises is irrelevant. In this case,
Antecedents can be viewed as a set of premises.

e FEach Binding of an inference step is a mapping from a variable to a
term specifying the substitutions performed on the premises before the
application of the step’s rule. An inference step can have any number
of bindings including none, and each binding is of type VariableBinding.
For instance, substitutions may be required to unify terms in premises
in order to perform resolution.

e Each DischargedAssumption of an inference step is an expression that
is discharged as an assumption by application of the step’s rule. An
inference step can have any number of discharged assumptions includ-
ing nodes, and each discharged assumption is of type Expression. This
property supports the application of rules requiring the discharging of
assumptions such as natural deduction’s implication introduction. An
assumption that is discharged at an inference step can be used as an
assumption in the proof of an antecedent of the inference step without
making the proof be conditional on that assumption.

e FEach Source of an inference step refers to the an entity representing
where original statements from which the conclusion was obtained.
An inference step can have any number of sources including none, and
each source is of type Source as described in Section 3.3.1. An inference
step’s source supports the justification of the node set conclusion when
the step’s rule is a DirectAssertion.

e The Engine of an inference step represents the inference engine that



produced the inference step. Each inference step has one Engine, which
is of type InferenceEngine.

e The TimeStamp of an inference step is the date when the inference step
was produced. Time stamp is of the primitive type dateTime. Every
inference step has one time stamp.

An inference step is said to be well-formed if:

1. Its node set conclusion is an instance of the conclusion schema specified
by its rule;

2. The expressions resulting from applying its bindings to its premise
schemas are instances of its rule’s premise schemas;

3. It has the same number of premises as its rule’s premise schemas; and

4. If it is an application of the DirectAssertion rule, than it has at least
one source, else it has no sources.

Further proof verification may be performed by checking side conditions
on declarative rules and running verification methods on method rules. How-
ever, a discussion of this level of verification is beyond the scope of this
article.

PML node set schemas and PML inference step schemas used later in
the article are defined as follows. A PML node set schema is a PML node
set which has a conclusion that is either a sentence schema? or a sentence;
which has a set of variable bindings that map free variables in the conclusion
to constants; which has zero of more inference steps; and whose inference
steps are either inference steps or inference step schemas. An inference
step schema is an inference set of a node set schema whose antecedents are
node set schemas.

An Expression is a PML representation of well-formed logical expressions
written in accordance with a given ExpressionLanguage.

3.2 Proofs

A PML node set represents a directed acyclic graph of proofs of its conclu-
sion. In this section we describe the proofs that are represented by a PML
node set.

1A sentence schema is a sentence optionally containing free variables. An instance of a
sentence schema S is a sentence that is S with each free variable replaced by a constant.



We begin by defining a proof as a sequence of “proof steps”, where each
proof step consists of a conclusion, a justification for that conclusion, and
a set of assumptions discharged by the step. “A proof of C” is defined to
be a proof whose last step has conclusion C. A proof of C is conditional on
an assumption A if and only if there is a step in the proof that has A as its
conclusion and “assumption” as its justification, and A is not discharged by
a later step in the proof. An unconditional proof of C' is a proof of C' that is
not conditional on any assumptions. (Note that assumptions can be made
in an unconditional proof, but each such assumption must be discharged by
a later step in the proof.) Finally, proof P1 is said to be subproof of P2 if
and only if the sequence of proof steps that is P1 is a subsequence of the
proof steps that is P2.

A PML node set N having conclusion C' represents a set of proofs of C'
defined as follows. If N is a node set, we will say that P is a “proof from
N” if and only if:

1. The conclusion of the last step of P is the conclusion of IV;

2. The justification of the last step of P is one of N’s inference steps S;
and

3. For each antecedent A; of S, exactly one proof from A; is a subproof
of P.

If N is a node set having conclusion C, then a proof from N is a proof

of C.

3.3 Provenance Level Concepts

Inference Web stores provenance information about proofs and explanations
in the IWBase. This section describes the concepts supported by IWBase
and that are part of the PML specification.

3.3.1 Provenance Element

ProvenanceElement represents a information unit describing the origin of
some PML proof level concept introduced in Section 3.1. ProvenanceEle-
ment is a superclass of the PML concepts at the provenance level and the
ProvenanceElement attributes are described as follows:

e The URI of a provenance element is the unique identifier of the prove-
nance element. Every provenance element has one well-formed URI,
which is an instance of the primitive type anyURI.



e The URL of a provenance element describes a URL used to browser an
element’s web document. For instance, if the provenance element is an
organization named the New York Times, then the http://www.nytimes.com
URL can be used to access a web document about the organization.

I In this case is the URL points to the organization’s web site. A
provenance element can have zero or one URL.

e The Name of a provenance element described a short name (or “nick-
name”) for the element within the IWBase. Every provenance element
has one name, and the name is an instance of the primitive type string.

e The Submitter of a provenance element represents the team of people
responsible for the registration of the provenance element in IWBase.
Every provenance element has one submitter, and the submitter is an
instance of the type Team, which is a subclass of Source as described
in Section 3.3.2.

e TheDateTimeInitialSubmission of a provenance element is the date
when the provenance element was first registered in IWBase. Every
provenance element has one DateTimeInitialSubmission, and that
is and instance of the primitive type dateTime.

e The DateTimeLastSubmission of a provenance element is the last
date when the provenance element was registered in IWBase. Every
provenance element has one DateTimeLastSubmission, and that is an
instance of the primitive type dateTime.

e The EnglishDescription of a provenance element is a description in
English of the provenance element. A provenance element can have
zero or one description in English, and EnglishDescription is an
instance of the primitive type string. The description in English is
intended to be used by tools to present provenance elements to human
agents. For example, the description in English of the Modus Ponens
inference rule may be a better presentation and more informative for
most users browsing a PML document than the presentation of the
formal specification of the rule.

3.3.2 The Source Concept

A Source is a ProvenanceElement representing an entity which is the source
of the original data. Current types of Inference Web sources include: Infer-
enceEngine, KnowledgeSource, Organization, Person, Publication, Representa-
tionLanguage, ExpressionLanguage and Team. A full specification of sources



is available at http://www.ksl.stanford.edu/software/IS/spec. We provide
a description of two source types here.

e An InferenceEngine represents an engine that is able to produce a justi-
fication for a given conclusion. Note that the use of the term “inference
engines” in this article is not limited to engines with reasoning capa-
bilities. For example, search engines retrieving information may serve
as an inference engine and provide a justification of their answer by a
direct assertion inference step. Similarly extraction modules may be
viewed as inference engines.

e A ExpressionLanguage represents a language used to write conclusions
of node sets. Any language can be registered as a representation lan-
guage in IWBase. Expression languages are typically able to represent
logical sentences, although PML does not place restrictions on the ex-
pression language.

3.3.3 The Rule Concept

An InferenceRule represents a ProvenanceElement specialization describing
rules applied to premises deriving node set conclusions. An InferenceRule
can be either a PrimitiveRule or a DerivedRule.

A PrimitiveRule is a type of an InferenceRule that is implemented by one
or more inference engines. A given rule Ry may not be called primitive until
it become associated with one or more inference engines. Thus, assuming
that R is implemented by an inference engine F1, the inference engine may
declare Ry to be a primitive rule. The notion that R; is a primitive rule
for one specific engine is relevant since R; may also be derived from Ro,
which is a primitive rule for another engine FE5. In this case, R; may be
registered once as a primitive rule and zero or more times as a derived rule,
depending on how many combinations of rules are used to derive R;. For
example a natural deduction reasoner E7 may define modus ponens as a
primitive rule and another reasoner E5 may register Robinson’s resolution
rule as a primitive rule. The FEs reasoner may be able to derive a modus
ponens rule using its primitive resolution rule. Thus, any rule R; can be
registered multiple times, once as a primitive rule and multiple other times
as derived rules depending on the number of different combinations of rules
used to derive Rs.

e The ConclusionSchema of a primitive rule represents the conclusion of
the primitive rule and it can be either a sentence schema or a sentence.



Every primitive rule has one conclusion schema, and that conclusion
schema is an instance of the type Expression.

e FEach PremiseSchema of a primitive rule represents a premise of the
primitive rule and it can be either a sentence schema or a sentence. A
primitive rule have zero or more premise schemas, and each of them
is an instance of the type Expression.

e FEach SideCondition of a primitive rule represents a condition speci-
fied in terms of the attributes of the conclusion’s node set, the conclu-
sion’s inference step applying the primitive rule; and premises’ node
sets.

e The ExpressionLanguage of a primitive rule is the language in which
the conclusion schema, premise schemas and side conditions of the
primitive rule are represented. Every node set has one expression
language, and that expression language is of type ExpressionLanguage.

A DeclarativeRule is a PrimitiveRule and is well-formed if and only if all
side conditions for the primitive rule hold.

A MethodRule is a PrimitiveRule whose side conditions cannot be com-
pletely specified in terms of the attributes of the conclusion’s node set, the
conclusion’s inference step applying the primitive rule; and premises’ node
sets. Inference rules that are “procedural attachments” are examples of
method rules. The current work on PML does not involve checking if method
rules are well-formed although future plans include checking support.

A DerivedRule is an InferenceRule specified from a PML node set schema
with the restriction that each node set schema must have one and only one
inference step. The Specification of a derived rule represents a proof (as
defined in Section 3.2) from a given PML node set schema since each PML
node set must have one and only one inference step. Moreover, the derived
rule’s proof is a proof schema since the PML node sets of the proof are
PML node set schemas.

4 Using PML Proofs

4.1 Support for Hybrid Reasoning

Experience with automated reasoners has made clear that in order to effec-
tively determine answers to complex real-world questions, general-purpose
reasoners need to be augmented with special-purpose reasoners that embody



both domain-specific and task-specific expertise. That is, effective deductive
answer determination requires hybrid reasoning.

We have developed an object-oriented modular architecture for hybrid
reasoning (called the JTP architecture), a library of general-purpose rea-
soning system components (called the JTP library) that supports rapid de-
velopment of reasoners and reasoning systems using the JTP architecture,
and a multi-use reasoning system (called the JTP system) employing the
JTP architecture and library [3]. The JTP architecture and library is in-
tended to enable the rapid building, specializing, and extending of hybrid
reasoning systems. Each reasoner in a JTP hybrid reasoning system can
embody special-purpose algorithms that reason more efficiently about par-
ticular commonly-occurring kinds of information. In addition, each reasoner
can store and maintain some of the system’s knowledge, using its own spe-
cialized representations that support faster inference about the particular
kinds of information for which it is specialized.

Proofs represented in PML play a central role in the JTP architecture in
that they are used to represent both queries and reasoning results as they
are sent to and received from reasoners during the hybrid reasoning process.
In this section we describe JTP’s use of PML proofs in hybrid reasoning.

4.1.1 JTP System Architecture

The JTP architecture assumes that there is a single initially empty knowl-
edge base (KB) with respect to which all processing is done. A KB is
considered to be a representation of a logical theory and to contain a set S
of symbolic logic sentences and a set of justifications for each sentence in
S. The architecture supports commands for loading a KB, adding an axiom
to a loaded KB, removing an axiom from a loaded KB, and asking what
(partial or full) instances of a sentence schema are entailed by a loaded KB.

The primary work of the system is assumed to be performed by modules
called reasoners. There are “telling” reasoners that are invoked when a
sentence is being added to the KB and “asking” reasoners that are invoked
when the KB is being queried. Reasoners produce reasoning steps, each
of which is a partial or completed portable proof. The reasoning steps
produced by telling reasoners are completed proofs of additional sentences
that are inferred from the reasoner’s input. The reasoning steps produced
by asking reasoners are partial or completed proofs of candidate answers to
a query.

Since the set of answers to a query may be of unpredictable size and may
require an unpredictable amount of time to derive, the output of a reasoner



is an enumerator that can be pulsed to obtain the next reasoning step
produced by the reasoner. Enumerators enable a reasoner to provide output
reasoning steps as they are derived and for additional derivations to be
attempted on an as needed basis.

A reasoning system using the JTP architecture needs some means of de-
termining to which of its arbitrary number of reasoners to route its inputs.
That capability is provided by reasoners in the system that act as “dis-
patchers” of an input to other reasoners that the dispatcher determines
may be able to process the input. Each dispatcher has a set of child rea-
soners associated with it and serves as a transparent proxy for those child
reasoners.

4.1.2 Reasoning Steps

Reasoners produce enumerations of reasoning steps, and take reasoning steps
as input. A reasoning step is a PML node set schema that represents a
partial or completed proof of a symbolic logic sentence.

A reasoning step that is a node set schema N having conclusion C', vari-
able bindings B, and no inference steps specifies a query to find proofs of
instances of the sentence schema C'/B (.i.e., the sentence schema produced
by applying the bindings B to C'). A reasoner given such a reasoning step as
input can produce either partial or complete proofs of instances C'/B. Each
partial or complete proof to be returned by the reasoner can be represented
by adding inference steps and variable bindings to a copy of the input rea-
soning step. Each node set in a reasoning step produced by a reasoner that
does not have an inference step is an unproven subgoal for which a proof is
needed in order to complete the proof.

Thus, reasoning steps are used to represent both queries and reasoning
results as they are sent to and received from reasoners during the hybrid
reasoning process.

4.1.3 The Tell and Ask Commands

The Tell Command takes as input a sentence S and adds it to the KB. The
command processor does that by forming a reasoning step R representing a
proof of S justified as a direct assertion, and then calling a telling reasoner
with P as input.

A telling reasoner takes as input a reasoning step that is a proof. The
proof may represent either a sentence that is being told to the system (justi-
fied as a direct assertion), or a result of a previous inference, justified by an
inference rule, that the reasoner is to build upon. The reasoner may assert



the sentence to one or more knowledge stores, produce additional inferences
in the form of new proofs, or signal that a contradiction has been found.
The output of a telling reasoner is an enumerator whose output when pulsed
is a proof representing the result of a new inference.

The Ask Command takes as input a sentence schema S, and produces as
output an enumerator whose output when pulsed is an unconditional proof
of an instance of S. The command processor produces its output by forming
a reasoning step having conclusion S, and then calling an asking reasoner
with that reasoning step as input.

An asking reasoner accepts as input a reasoning step R having conclusion
C, and no inference step. R represents a query whose answers are instances
of C'. The reasoner attempts to produce reasoning steps having the same
conclusion as R and a variable binding set that is a superset of R’s variable
binding set. The reasoner’s output is an enumerator whose output when
pulsed is such a reasoning step. If no reasoning steps can be produced, then
the enumerator is empty.

For example, consider a query to find bindings for v; and v, such that “(P
v1 vg2)” is true. Assume the knowledge base contains the axioms “(=> (and
(Qzy) (Ryz) (Pxz)) and “(Q a b)”. An asking reasoner that receives
this query as a node set schema could return a node set schema with “(P v;
vg)” as the conclusion, {(v1 a)} as the variable bindings, and an inference
step schema whose rule is generalized modus ponens; whose bindings are (x
a) and (y b); and whose antecedents are A, As, and As. The conclusion of
A; would be “(=> (and (Q z y) (Ry 2)) (P = 2))”, and A; would have an
inference step whose rule is “direct assertion”. The conclusion of As would
be “(Q a b)”, and Ay would have an inference step whose rule is “direct
assertion”. The conclusion of Az would be “(R b z)”, and Az would have
no inference steps. Thus, “(R b z)” would be an unproven subgoal to be
dispatched to an appropriate reasoner in an attempt to complete the proof.

4.2 Support for Explanations

Any presentation of the proof of a conclusion that is more understandable
to the user than the proof is considered an explanation in this paper. Thus,
the presentation of PML proofs as discussed in Section 4.2.1 is a strategy
to explain conclusions. Most users in the Semantic Web, however, may be
unable to understand logical proofs. For these users, the presentation of
the ground assertions used to conclude C' as discussed in Section 4.2.2 may
be a better type of explanation for C since it gives them an understanding
of what the information depended upon without going into the details of



the inference. In general, any abstraction of the proof of C is also an ex-
planation for C. The use of rewriting rules as discussed in Section 4.2.3 is
an useful way of abstracting proofs and is one that we leverage to generate
explanations that provide some notion of the inferences without providing
all of the details.

4.2.1 Browsing PML Documents

The IW browser is an web application used to render PML documents into
human-friendly HTML documents. Given a node set’s URI, the browser can
render a proof by traversing from the node set’s inference steps the graph
composed of node sets and their inference steps. The use of the PML format
provides two immediate benefits for browsing proofs:

e Direct Access to Proof Nodes: Proofs can easily be composed of hun-
dreds or thousands of node sets. Users, however, may not need to
browse all nodes to understand a large proof. In fact, we often see
that information from few key node sets may be enough for most
users to understand a proof. Further, not only may it be enough, it is
preferable to only view a few critical components of the proof instead
of viewing most or all of the proof. Thus, PML proofs allow users to
refer to URISs of specific node sets of proofs rather than to a monolithic
proof.

o Lightweight Loading of Proofs: The browser’s proof lens is a metaphor
of a magnifier visualizing parts of proofs. The lens focus is the con-
clusion of a given node set. The lens magnitude is the maximum
number of levels of inference steps traversed in order to render the
lens. The refocusing of a proof lens is a user selection of a conclusion
in the lens that is not the the current focus of the lens. Thus, using
PML node sets, the lens metaphor implements a lightweight loading of
proofs since node sets are loaded on demand when the lens magnitude
changes or the lens is refocused.

When interacting with the browser, users may select from a number of
proof styles and sentence formats for displaying PML documents. Proof style
is the layout used to place proof elements on the display when presenting
a proof. For example, a “textbook” logic-style uses a bar to separate the
conclusion of a node set from the premises of that conclusion.

The name of the inference step is placed on the right side of bar. Sentence
format identifies the preferred way of formating the conclusions of node
sets. The “raw” format means that conclusions are presented as they are



represented in the PML document. Other sentence formats rely on the
browser capability of translating conclusions from their original languages
into the requested format. Since many users prefer to see a form of natural
language output, we have provided a simple logic to English presentation
module that will present nodes labeled in KIF [5] in a limited English format.

4.2.2 Browsing Knowledge Provenance from PML Documents

Users and reviewers of our work have consistently been interested in having
simple ways to obtain the ground assertions that were used to find a partic-
ular conclusion C. A summary of the statements used in the proof provides
one course level of abstraction of the proof. Beyond simple collections of
the statements or knowledge bases used, Inference Web also provides access
to the meta-information available for these sources. Thus a user may find
that the particular conclusion C relied on exactly two knowledge bases (and
potentially a particular set of sentences in those two knowledge bases) and
additionally may learn that those two knowledge bases were considered au-
thoritative sources by a particular verification body and the two knowledge
bases were updated within the last week. That may be as much information
as some users would like to see about a conclusion at a particular time. One
further refinement to this service is that users may ask for the source and
associated meta information just within a particular lens focus (thus just the
sources used in the particular portion of the proof that is being displayed
on the screen at the given time).

In practical scenarios such as those used on the ARDA AQUAINT® and
NIMD® projects, presentation of knowledge provenance information can be
large lists of assertions entailing the conclusion in the lens focus. In terms of
PML proof concepts, the ground assertions are the conclusions of node sets
justified by direct inference steps applying the direct assertion rule. The
list of sources is a consolidation of the sources of the ground assertions’
inference steps justifying the ground assertions. The meta-information of
the sources are the entries of the sources in the IWBase. Thus, PML proofs
are the artifacts relating knowledge provenance information in the IWBase
to explanations of Semantic Web services.

Shttp://www.ic-arda.org/InfoExploit /aquaint /
Shttp://www.ic-arda.org/Novel_Intelligence/



4.2.3 PML Explanations

When Inference Web provides abstraction techniques for proofs, it will hide
potentially a lot of information about how a conclusion was reached. We
have observed that hiding many of the primitive core rules in reasoners
is useful for many users. For example, users may not want to see many
applications of “modus ponens” in the JTP reasoner and may instead prefer
to see one application of a courser grained inference such as class transitivity.
The reasoner was built using primitive rules because they were useful for
efficient implementation of the reasoner, but not necessarily because they
are useful for human understanding. Typically primitive rules are at the
wrong level of granularity.

The rewriting of proofs based on primitive rules into proofs based on
derived rules is one way of abstracting primitive rules. However, syntactic
manipulations of proofs may also be insufficient for abstracting machine-
generated proofs into some more understandable proofs [6]. Proofs can be-
come more understandable if they are rewritten using IW tactics, that are
rules derived from axioms from language descriptions such as the DAML [4]
axiomatic set. In tactics, axioms are the elements responsible for aggregat-
ing some semantics in order to make the rules more understandable.

The IWBase registrar has an editor of derived rules that can be used to
specify tactics. Thus, the IW explainer algorithm generates explanations in
a systematic way using IWBase derived rules. Thus, for a conclusion C, the
IW explainer can abstract away both a number of node sets of proof of C.
The user may always ask follow-up questions and still obtain the proof of C,
however the explanation of C' provides abstracted explanations. The general
result is to hide primitive rules and expose higher-level derived rules.

The ability to provide portions of proofs and provide support for follow-
up questions has been found to be a critical component for some users ability
to view explanations and proofs[8]. Inference Web follows this architectural
design of being able to present stand alone components of proofs and then
provide follow-up questions that are appropriate for the context in that
proof.

5 Related Work

Automated reasoners have different ways to represent proofs [15]. Moreover,
a reasoner can have multiple ways of representing proofs. For example, a
reasoner can have an internal representation of proofs that has a number
of features to handle optimizations and an external representation of proofs



used to present a trace of how conclusions are derived. Proofs exchanged
between reasoners are usually external representation of proofs. Indeed,
many proof elements such as optimization properties can be useless for other
reasoners because the optimizations are tied to the internals of a particular
engine.

External representations of proofs have been developed for several rea-
sons. For example, most automated reasoners are able to produce a simple
trace of their proofs in order to debug the reasoners themselves. The need
to check proofs is a more sophisticated reason to have a external represen-
tation of proof. For example, Watson [16] created a technique to represent
and check proofs produce by Isabelle [12].

Most external representations of proofs in use by more than one au-
tomated reasoning were developed within the context of hybrid reasoning
systems and logical frameworks. But even in the context of hybrid reason-
ing systems, few are the efforts to create a general representation of proofs
rather than a representation that is able to conciliate few reasoner-specific
representations. PDS [1] is an example of a general representation of proofs
that is used on hybrid reasoning systems such as MBase [7].

PML and PDS share the ability of representing proofs at different levels
of abstraction. For instance, the PML ability to generate explanations from
proofs corresponds to the PDS notion of “third dimension” for is proof
representation. The MBase use of PDS is also of particular interest for the
PML since it demonstrated the need of a web artifact to represent proofs.
Indeed, MBase use an XML version of PDS.

We have provided a few example web services that use PML proofs.
The KSL Wine Agent’, the DAML Query Language Client®, and the OWL
Query Language Client all use PML proofs in order to provide interoperable
explanations of their answers. The IW Browser? is a web service that renders
PML proofs and presents them in multiple formats for humans. All of these
agent’s use the Stanford JTP hybrid reasoner but we are extending SRI’s
SNARK theorem prover'® to produce portable proofs and simultaneously
integrating ISI’s Prometheus!' query planner with Inference web. We are
also pursuing discussions with designers of other reasoning systems including

"http://www.ksl.stanford.edu/people/dlm/webont /wineAgent /
Shttp://onto.stanford.edu:8080/dql/servlet/DQLFrontEnd
http://belo.stanford.edu:8080/iwbrowser
Ohttp://www.ai.sri.com/ stickel /snark.html
Hhttp://www.isi.edu/info-agents/Prometheus/



W3C’s CWM1!2 and UT’s KM!3 and SRI’s SPARK.

6 Conclusion and Future Work

In this article we have introduced a proof markup language — PML — that
is used to support web services inter-operation and trust. PML has been
integrated into the Inference Web infrastructure and is used as the interlin-
gua that allows IW to present, combine, summarize, abstract, and explain
answers generated by web services. In our discussion of hybrid reasoning
and our integration efforts with JTP, we presented how PML supports hy-
brid reasoning and provided one implemented example of how the integra-
tion with a reasoner works. PML provides the representational foundation
and Inference Web provides the tools and infrastructural support for en-
abling proof annotation, knowledge provenance presentation, and explana-
tion browsing for agents and humans. This work provides the foundation
from which web services may realize their promise of providing remote, in-
teroperable access across components of distributed software systems.

Acknowledgments. The authors would like to thank Pat Hayes for many
thought provoking conversations concerning explanation and for the PML
name.

References

[1] Lassaad Cheikhrouhou and Volker Sorge. PDS — A Three-Dimensional
Data Structure for Proof Plans. In Proceedings of the Inter-
national Conference on Artificial and Computational Intelligence
(ACIDCA’2000), Monastir, Tunisia, March 2000.

[2] Dan Connolly, Frank van Harmelen, Tan Horrocks, Deborah L. McGuin-
ness, Peter F. Patel-Schneider, and Lynn Andrea Stein. DAML~+OIL
(March 2001) Reference Description. Technical Report Note 18, World
Wide Web Committee (W3C), December 2001.

[3] Richard Fikes, Jessica Jenkins, and Gleb Frank. JTP: A System Ar-
chitecture and Component Library for Hybrid Reasoning. Technical
Report KSL-03-01, Knowledge Systems Laboratory, Stanford Univer-
sity, Stanford, CA, USA, 2003.

Phttp:/ /www.w3.0rg/2000/10/swap/doc/cwm.html
Bhttp://www.cs.utexas.edu,/users/mfkb/km.html




[4]

[10]

Richard Fikes and Deborah L. McGuinness. An Axiomatic Semantics
for RDF, RDF-S, and DAML+OIL (March 2001). Technical Report
Note 18, W3C, December 2001.

Michael R. Genesereth and Richard Fikes. Knowledge interchange for-
mat, version 3.0 reference manual. Technical Report Logic-92-1, Com-
puter Science Department, Stanford University, Stanford, CA, USA,
1992.

Xiaorong Huang. Reconstructing Proofs at the Assertion Level. In
Proceedings of CADE-9/, LNAI-814, pages 738-752. Springer, 1994.

Michael Kohlhase and Andreas Franke. MBase: Representing Knowl-
edge and Context for the Integration of Mathematical Software Sys-
tems. Journal of Symbolic Computation, 32(4):365-402, September
2001.

Deborah L. McGuinness. FEzplaining Reasoning in Description Logics.
PhD thesis, Rutgers University, 1996.

Deborah L. McGuinness and Paulo Pinheiro da Silva. Infrastructure
for Web Explanations. In D. Fensel, K. Sycara, and J. Mylopoulos,
editors, Proceedings of 2nd International Semantic Web Conference
(ISWC2003), LNCS-2870, pages 113-129, Sanibel, FL, USA, October
2003. Springer.

Deborah L. McGuinness and Paulo Pinheiro da Silva. Registry-Based
Support for Information Integration. In Proceedings of IJCAI-2003
Workshop on Information Integration on the Web (IIWeb-03), pages
117-122, Acapulco, Mexico, August 2003.

Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology
Language Overview. Technical report, World Wide Web Consortium
(W3C), December 9 2003. Proposed Recommendation.

Lawrence C. Paulson. Isabelle: the next 700 theorem provers. In
P. Odifreddi, editor, Logic and Computer Science, pages 361-386. Aca-
demic Press, 1990.

Paulo Pinheiro da Silva, Deborah L. McGuinness, and Rob McCool.
Knowledge Provenance Infrastructure. IEEE Data Engineering Bul-
letin, December 2003. To appear.



[14] J. Reynolds. Unpublished seminar notes. Stanford University, Stanford,
CA, 1966.

[15] Geoffrey N. Watson. Proof Representations in Theorem Provers. Tech-
nical Report 98-13, Software Verification Research Centre, The Univer-
sity of Queensland, Queensland, Australia, September 1998.

[16] Geoffrey N. Watson. A Generic Proof Checker. PhD thesis, The Uni-
versity of Queensland, Queensland, Australia, 2002.



