PPDR: A Proof Protocol for Deductive Reasoning

Paulo Pinheiro da Silval Patrick J. Hayes?
Deborah L. McGuinness' Richard Fikes'

Knowledge Systems Laboratory, Stanford University
Stanford, CA 94305, USA.
e-mail: {pp,dlm,fikes}@ksl.stanford.edu
Institute for Human and Machine Cognition
Pensacola, FL 32502
e-mail: phayes@ihmc.us

Abstract

The distributed and heterogeneous nature of the Web implies that
a variety of agents may participate in helping to answer any question
posed to a web application. Since multiple agents with various reasoning
methods and representation languages may be used, inference rules used
to derive any particular answer may be quite diverse. Since the evolv-
ing web is expected to continue to leverage diverse agents with diverse
reasoning rules and since many users will need to have access to some
explanation of how answers were obtained, this emerging web needs to
have a way of leveraging and explaining hybrid reasoning. The emerg-
ing web needs an abstract, uniform way of specifying inference rules used
in answer generation if tools are going to combine answers from hybrid
systems, manipulate the justifications of those answers, and check to see
if the justifications include correct applications of the inference rules. In
this paper we introduce PPDR - the Proof Protocol for Deductive Rea-
soning — which is a language used to represent diverse inference rules.
Also, in combination with the Proof Markup Language (PML), PPDR
allows proofs produced by multiple agents to be combined, manipulated
to present abstract explanations, and verified against the abstract rule
specification.

1 Introduction

Distributed, hybrid applications such as those found on the Web benefit from
the ability to have access to the inference rules! used to help determine answers

!n this paper, the term inference rule (or rule) refers to software implementations of prim-
itive inferences used to derive conclusions from premises. Thus, inference rule refers to rules
such as resolution and modus ponens rather than to theorems and assertions characterized,

or partial answers. If these applications have access to the inference rules or
used to obtain answers, then they can enable features such as explanations of
answers, combinations of partial answers from multiple agents, verification of
inference rule application, etc. Beyond simple access to the inference rules, we
would like to have a way of describing the inference rules in a declarative manner
so that agents and humans can better understand the rules and can recognize
patterns in the rules in order to facilitate abstraction and combination.

The work described in this paper presents an approach for specifying infer-
ence rules for the Semantic Web. The work is developed in the context of the
Inference Web (IW) [9], which is an infrastructure for explaining answers from
Semantic Web applications and services. Inference Web uses the Proof Markup
Language (PML) [13], as its proof interlingua. PML can be used to represent
the information agents need to understand results and the justifications of those
results.

PML allows question answering systems to encode proofs of their answers.
The proofs are described as collections of NodeSets connected by InferenceSteps.
A NodeSet represents a step in a proof whose conclusion is justified by all of the
inference steps associated with the NodeSet. Note that there may be multiple
ways to justify any one statement and each of those may be represented by
an inference step associated with the NodeSet. An InferenceStep represents a
justification for the conclusion of a node set. PML specifies the syntactic condi-
tions under which a set of PML documents representing proofs is well-formed.
One important requirement for having a well-formed set of PML documents is
that inference steps must be correct applications of inference rules on inference
step premises. This paper introduces PPDR — A Proof Protocol for Deductive
Reasoning, which is a language for describing inference rules. This is intended
to provide a way for rules to be declaratively represented and communicated,
so that PML proofs can be checked for compliance against a set of rules.

PPDR is designed to be general-purpose in the sense that a variety of proof
rule forms can be represented. For simplicity we require that the rules are stated
with respect to a fixed logical language. We have chosen Simplified Common
Logic (SCL)? as our logical notation. SCL is a modern successor to KIF [5] and
provides a convenient, expressive language for our needs. The current standard
semantic web languages and varieties of first-order logic can be translated into
SCL.

The rest of the paper is organized as follows: Section 2 introduces the PPDR
language specification. Section 3 describes an Inference Web use of PPDR, for
specifying inference rules as proof meta-information and of the use of these
rule specifications in PPDR to check their correct applications in PML proofs.
Section 4 describes related notation developments for declarative specifications
of rules. Section 5 summarizes the main contributions of PPDR in the paper.

for instance, as production rules, business rules and event-condition-action rules.
2http://cl.tamu.edu/docs/scl/scl-latest.html

2 The Proof Protocol for Deductive Reasoning

2.1 SCL Schemas

An inference rule involves a general pattern of transformations on expressions,
whereby parts of expressions are rearranged to produce a conclusion. PPDR
uses schemas to state such transformations. We define a schema to be a pat-
tern, which is any expression of SCL in which some lexical items of a certain
grammatical category (typically things like Sent(ence), Name, Rel(ation symbol)
etc.) have been replaced by a schematic variable (or meta-variable), paired with
a set of syntax conditions, which record the corresponding type of each meta-
variable (and possibly other conditions, described later). So, an SCL schema
has the general form

pattern ;; syntax-conditions
where

e the pattern is an SCL expression with schematic variables. (PPDR also
uses several other categories of meta-variable, noted below.) In order to
distinguish schematic variables from SCL text in a pattern, we enclose
literal SCL text in single quotes and leave schematic variables unquoted.
This syntax is intended to indicate any piece of SCL core syntax text which
can be obtained by substituting suitable lexical items for the schematic
variables and concatenating the fragments in the order shown. Note that
whitespace differences are ignored at the lexical syntax level. By conven-
tion, schematic variables must start with an alphabetic character and are
written in lower case.

Typically, rules involve applying substitutions to schematic variables. A
substitution is a mapping from schematic variables to expressions of the
appropriate type - more generally, which satisfies the syntactic conditions -
and is represented by a list of pairs of variable, expression (e.g., v/t) (or by
a schematic variable of the type substitution as discussed in Section 2.4.)
A substitution application on an expression in a pattern is represented
by a pair of square brackets following the expression and embracing the
substitution. For example, p[v/t] is a substitution meaning (whatever
expression is substituted for) p with ¢ substituted for v wherever it occurs
in that expression.

e the syntax-conditions are specialized expressions specifying the types of
the schematic variables. These are written in the SCL core syntax using
a special vocabulary, but the meta-variables are treated here as normal
variables.

For example,

’(implies’ p ¢’)’;; (Sent p q)

is a schema which matches any SCL implication sentence. Here, p and q are
schematic variables for SCL sentences. The syntax condition predicate Sent
takes any number of arguments and is true just when they are all sentences.

2.2 List Notation

When stating rules it is often necessary to consider sequences of expressions,
and SCL syntax is based on sequencing. We therefore allow another class of
meta-variables which range over finite sequences, or lists, of expressions. For
simplicity, we only allow sequences in which every expression has the same syn-
tactic type, e.g. sequences of sentences or lists of terms. We use the simple
but adequate convention that meta-variables starting with upper-case letters
indicate expression sequences, while those starting with a lower-case letter in-
dicate single expressions. Note that sequences have the structure of “flattened”
lists, so that a single-element sequence can be identified with its single member,
and concatenation is an associative operation which can be identified with LISP
consing. PPDR uses use infix “+” as the concatenation operator and “—” as a
binary sequence-difference operator. In addition, the infix dot notation acts as
a selector, so that “A.2” refers to the 2nd item in the sequence A. The use of a
variable name after the dot indicates an arbitrary element in the sequence. This
use of variables over integers is the third kind of meta-variable used in PPDR
pattern syntax. The notation “(CardA)” indicates the length of the sequence.
The empty sequence has length zero and can be indicated by the notation “[]”.
With these conventions, for example, “a + b” indicates a sequence with two
elements, “a+ C” a sequence with at least one element and “[a+ b+ C].2” is b.

Using the list notation, we can specify new kinds of SCL schemas. For
example,

"(and’ N 7))’ ;; (Sent N)

is a schema which matches any SCL conjunction sentence.

The syntax conditions may use this sequence vocabulary, together with
equality and other operations defined later, to state conditions which must be
satisfied by the sentences involved in a rule. In general, syntax conditions can be
viewed as computable conditions on bindings to meta-variables, and so any com-
putable operation on SCL syntax or numerals is potentially usable in a PPDR
syntax condition. While we anticipate that PPDR will be extended as needed
by adding user-defined syntax conditions, the condition vocabulary described in
this paper seems to be adequate to describe a wide variety of inference rules in
existing logics.

2.3 Rule Schema

In PPDR compliant PML documents, a proof is a structure (not quite a tree)
generated by rules which have the general form:

premise-list |— conclusion ;; syntaz-conditions

where premise-list is a sequence of premises, separated by semi-colons, each of
which is specified by a pattern and may be followed by an optional discharged
assumption, written inside square brackets

premise, [discharged assumption] ; ... ; premise, discharged assump-
tion

and conclusion is also a pattern, and the syntax conditions apply to the whole
rule. The following example

ndUIL ’(forall CN’)’q’)’|—"(forall (' N-N.i")’ q[t/N.i]’)’%;
(Name N) (Sent q) (Term t)

is a rule schema for any SCL universal quantification. To check that the follow-
ing rule is a correct application of ndUI:

(forall (a b c) d) |- (forall (a c¢) d[’foo’/bl)

it is sufficient to note a binding of expressions to the schematic variables which
maps the schema to the rule while satisfying the syntactic conditions:

e N binds to (a b ¢)
e { binds to 2

e ¢ binds to d

e ¢ binds to foo

which satisfies the syntax conditions; and then the rule schema instantiates
directly to:

(forall (a b c) d) |— (forall (abc) - (ab c).2 d[’foo?/
(a b c).21)

which in turn becomes the desired rule when the PPDR meta-notation is suit-
ably evaluated following the equations (abe).2 = b and ((abe) — (abe).2) = (ac):

(forall (a b ¢) d) |- (forall (a c) d[’foo’/bl)

2.4 Syntax Conditions
Grammatical Categories

Grammatical categories for variables in SCL schema patterns are specified by
predicates which correspond to, or can be defined using, SCL grammatical cat-
egories.

e Sent(ence) is an SCL grammatical category;

e Atom(ic sentence) is an SCL grammatical category;

Lit(eral) is an atom or a sentence of the form ’(not’ x ')’ where (Atom x);

e Name is a variable when it occurs inside a quantifier that binds it;

Term is an SCL grammatical category.

Unification Functions

The classical rule of modus ponens is easy to describe using the vocabulary
defined so far:

ndMP: p; ’(implies’ p @’)’ |— q;; (Sent p q)

However, the more general rule modus ponens with unification (MPwU) re-
quires us to introduce a new idea since its statement refers to a unifier:

MPwU: p; ’(implies’r q’)’ |- q[s] ;; (Sent p q) (= s mgu(p,r))

In MPwU, s is a new schematic variable ranging over substitutions. A substi-
tution is a mapping from variables to terms. The substitution notation [v/t]
already used denotes instances of such variables.

PPDR takes as primitive the most general simultaneous unifier function
mgsu(). This takes as arguments two lists L and M of expressions and returns
as value the most general substitution s such that L.i[s] = M.i[s] for each ¢ in
the range < 1,card(L) >, if it exists. If M and L have different lengths then
the result is undefined. The use of this function in a syntax condition asserts
that the function is defined. The binary most general unifier of two expressions
is the special case of mgsu() when its arguments are singleton sequences.

The following proof shows why the mgsu() is a useful primitive:

GMP: A; ’(implies (and’ A’)’ q’)’ |— q;; (Sent L q)

is an SCL proof schema for generalized modus ponens which allows an arbitrary
number of premises. Thus, the following proof schema

GMPwU: A; '(implies (and’ B ’)’ q)’ |- q[s] ;; (Sent A B q)
(= s mgsu(A,B)) (= card(A) card(B))

is an SCL proof schema for generalized modus ponens with unification that cor-
responds to MPwU for GMP. Here, s is defined over lists of sentences, A and
B, rather than over a pair of sentences. Notice that if the antecedents are not
unifiable then the schema does not apply.

Normal Form Sentences

Many inference engines normalize the sentences in proofs before applying their
inference rules. PPDR schema can impose normal-form conditions by referring
to grammatical categories and using schema description patterns directly in the
description of the syntax conditions. For example, the following proof

BiRes: '(or’ A ")’ "(or’ B ")’ |- "(or’ A + B - Ai- Bj ")’ 3
(Lit A B) (= A.i '(not’ B.j"))

is an SCL proof schema for bi-resolution applied to clauses represented in SCL
as disjunctions of literals.

2.5 Sentence Discharge

The following proof
ndImplIntro: p, [q] |- *(implies ’qp ’)’ ;; (Sent p q)

shows that ¢ was discharged in order to introduce the implication in the proof
schema conclusion. Moreover, the proof shows that ¢ was an assumption for q.
For natural deduction or-elimination we have the following;:

ndOrElim: "(or’ pq’)’;r, [p]; 1, [q] |- 1 5; (Sent p q 1)

where p is an assumption for the first » premise while the ¢ is an assumption
for the other r premise.

2.6 PPDR Specifications in XML

The notation presented so far is the human-friendly version of PPDR. In fact,
the rules specifications presented in this paper show that even complex rules such
as GMPwU and ndOrElim can be shortly represented in PPDR. Considering
the Semantic Web use of PPDR, rule specifications can also be represented in
XML. For example, the PPDR specification for ndUI introduced in Section 2.3
can be represented in XML as follows:

<ppdr:Rule name="ndUI">
<ppdr:Premise syntax="scl">
(forall (<ppdr:var type="nameList">N</ppdr:var>)
<ppdr:var type="sentence">q</ppdr:var>
)
</ppdr:Premise>
<ppdr:Conclusion syntax="scl">
(forall (
<ppdr:op type="removeltemFromList">
<ppdr:var>N</ppdr:var>
<ppdr:op type="selectItemInList">
<ppdr :var>N</ppdr:var>
<ppdr:var type="index">i</ppdr:var>
</ppdr : op>
</ppdr : op>
)
<ppdr:op type="instantiate"
<ppdr:var> q </ppdr:var>
<ppdr:substitution>
<ppdr:var type="term">t</ppdr:var>
<ppdr:op type="selectItemInList">
<ppdr:var>N</ppdr:var>
<ppdr:var>i</ppdr:var>

</ppdr:op>
</ppdr:substitution>
</ppdr:op>
)
</ppdr:Conclusion>
</ppdr:Rule>

Premises and conclusions are patterns written in the syntax form indi-
cated. Then all patterns are SCL syntax written as body text, with marked-
up <ppdr:var> and <ppdr:op> items in it, each with a property indicat-
ing type. Properties are the grammatical categories of PPDR as described
in Section 2.4 with a distinction, at the XML level, between single elements
(i.e., Term) and lists (i.e., TermList). For example, the statement <ppdr:var
type=‘ ‘Sentencelist’’>N</ppdr:var>says that N is a SentenceList. Meta-
operations are expected to be applied during matching of the pattern to a rule.
Meta-operators such as N — N.2 are handled by special markup, consisting of
operators applied to arguments as in the following example:

<ppdr:op type="removeltemFromList">
<ppdr:var>N</ppdr:var>
<ppdr:op type="selectItemInList">
<ppdr:var>N</ppdr:var>
2
</ppdr:op>
</ppdr:op>

3 Inference Web and PPDR

Inference Web supports the use of any language for writing proof node conclu-
sions and for specifying inference step rules. Moreover, it supports the regis-
tration of multiple languages for representing expressions and expression spec-
ifications. Section 3.1 describes how PPDR expressions can be used to specify
inference rules registered in a repository of proof-related meta-data. Section 3.2
describes how rule specifications written in PPDR and stored in the meta-data
repository can be used for checking the correctness of rule applications on PML
proofs. In order to use PPDR in proofs where expressions are written in lan-
guages other than SCL, Section 3.3 describes the Inference Web support for
translation rules.

3.1 PPDR Specification of Rules in IWBase

When presenting a typical proof, an engine may state which inference rule was
applied to some premises to infer the proof conclusion. Premises and conclusions
are main elements of proofs which are connected by inference rules applied to
premises producing conclusions. Typical proofs, however, rarely include rule
specification information.

Meta-information can be used to enhance proofs. In the Inference Web,
IWBase [10] is a distributed repository of meta-information providing services
for maintaining entries and for coordinating the distributed nodes of the repos-
itory. Figure 1 shows the registration of the MPwU rule® in IWBase having the
following attributes:

e a URI that is the unique identifier for the rule — http://.../registry/
DPR/MPwU.owl #MPwU;

a type — PrimitiveRule;
e a name — “Modus Ponens with Unification”;
e a string containing the rule’s formal specification; and

e 3 representation language used for writing the rule specification.

Boxes in the figure are abstractions of PML documents written in OWL and
representing meta-level concepts related to proofs. Each PML concept has a
type and a URI identified above each box.

FrirmithveRuie: hitpal.. SreqistryDFRMPwLL Ol Pyl
narme; "Modus Ponens with Unification”

rfeSpec'p; limplies ' rg) |- gls] ;) (Sent p gy = 5 mgud,m”
haslanguage: hitp i registrL GIPPDR . ow/#PFDR

Language: hitpdr. SregistyLGIPPDRE. .owl#FFDR

‘ hame: "PPDR — Proof Protocal for Deductive Reasoning” |

Language: hitpdr . fregistiLGISCL owl#SCL

‘ hame: "SCL - Simplified Comman Logic" |

Figure 1: IWBase proof meta-information.

A few points worth noting follow:

e meta-information related to objects referred to in proofs such as rules are
registered in the IWBase. That meta-information can be used anytime
for several purposes including checking rule applications as discussed in
Section 3.2. Figure 1 also shows a few representation language entries used
for specifying proof-level contents, i.e., the entry for the SCL and PPDR
languages.

3The actual IWBase entry for MPwU may be visualized online using an IWBase registrar
at http://iw.stanford.edu/iwregistrar or it can be accessed directly from the IWBase registry
in its original OWL [11] format at http://iw.stanford.edu/registry/DPR/MPwU.owl.

Mociesaet httpofi. Fa oles Mogieset hitpoi. 1B .owl#B

conciusioRe {implies Bubotesa P GRAB.) conciusion: "(subClassOf CRAB SEAFOOD)"
(type TonysSpecialty 7" :
hastanguage: hitp:i. fregistrLG/SCL owl#SCL hasLanglage: hittp. fregistngLGISCL owl#SCL

NodeSet hitpf. SC owl#C

conciusion: "(type TonysSpecialty SEAF OOD)"
haslanguage: hitpeli iregistnLGISCL owl#SCL

isConsequeniCl | nasRule: hitpal. JregistryDPRIG MP.owlMPwL gwl
hasAntecedents: hitpl £8 ovl#ed
hitpai. I8 . owil#B
hasMetaBindings: "p""isubClassOf CRAB SEAFC OD)"
"r"isubClassOf CRAB M)"
"g""itype TonysSpecialty 7"

Figure 2: PML proof-level information.

e PPDR may be used to specify inference rules at the proof meta-level.
Thus, tools can use these specifications for several reasons including proof
transformations based on the matching of derived rules against proof frag-
ments. Since proof transformation may be used to abstract proofs into
more meaningful explanations, this can be of value.

3.2 PML-Based Inference Step Checking

PPDR may be used to verify whether inference steps in PML documents are
correct applications of inference rules. Figure 2 shows a PML proof fragment
composed of three node sets, A, B and C, where we want to check if the inference
step in node C is a correct rule application. So, each node set is represented
as a stand-alone rectangle? that is uniquely identified by a URI. The URI for
A is http://.../A.owl#A and the URIs for B and C are similar to the URI
for A replacing “A” by “B” and “A” by “C” respectively. The inference step to
be checked is represented as a box within C attached to the isConsequentOf
property. The inference step is said to be an application of MPwU as indicated
by the URIref in the hasRule property of the inference step. Thus, the step is
a correct application of MPwU if:

1. the conclusions of the inference step antecedents, which are (implies
(subClass0f CRAB 7x) (type TonysSpecialty ?x)) and (subClassOf
CRAB SEAF00D), match the rule premises, which is “p; ’(implies ’ r q

));”;

2. the inference step conclusion, which is (type TonySpecialty SEAF00D),
matches the rule conclusion, which is “q[s]”;

4The graphical notation in Figure 2 is consistent with the notation in Figure 1 since boxes
on both figures are PML elements as described in [13]. Boxes in the Figure are abstractions
of PML documents written in OWL. Stand-alone boxes represent PML node sets and the
inner-box represents a PML inference step. The URI of each node set is identified on its top.

3. the rule syntactic conditions can be verified for conditions 1 and 2.

From the hasMetaBindings property of the inference step, we know that:
p is bound to (subClass0f CRAB SEAF00D); r is bound to (subClass0f CRAB
SEAF00D); and ¢ is bound to (type TonysSpecialty ?x). Thus, the inference
step meets requirement 1 since it has two premises and the premise that is not
bound to p is an implication (it has the SCL lexicon “implies”). We can also ver-
ify that the step meets the requirement 2 since the conclusion and the sentence
derived from the implied part of the premise has the same predicate (i.e. “type”)
and both have two arguments. Thus, mgu(p/r) =“SEAFOOD” /?x. Moreover,
the inference step is a correct application for MPwU since the conclusion of C
is the application of g[mgu(r, p)].

The hasMetaBindings property of inference step assumes that inference
engines producing PML documents have access to the rule specification in the
IWBase in order to generate the meta-level bindings. PML, however, does not
force inference steps to have meta-level bindings in order to be well-formed.
Therefore, checking tools may be unable to decide the correct way of binding
schematic variables if meta-level bindings are not provided.

In this paper we use the term inference step checking rather then proof check-
ing since a comprehensive checking of proofs in PML documents may involve
other tasks and is beyond the current scope of our work. For instance, it may
involve a syntactic verification of the PML documents. Moreover, for the con-
clusion of each node, it may involve the verification if they are valid expressions
according to the language specified by the hasLanguage property of the node
set.

3.3 IWBase Translation Rules

In addition to primitive and derived rules, IWBase supports the registration of
translation rules representing expression transformations from one language into
another one. Translation rules are directional so a rule from A to B and a rule
from B to A are different. IWBase restricts to one the number of translation
rules from one given language into another given language.

A translation rule associated program be called during the process of check-
ing a proof if registered in IWBase. Registered associated programs (translators)
can either translate an expression written in A into an expression written in B
or return an error code informing that it cannot perform the translation. In
fact, translators are not required to support full translation between languages.

PML checking tools based on PPDR can always try to translate sentences
written in languages other than SCL into SCL by used translation rules and
their translators. Thus, once node set conclusion can be translated into SCL,
checking tools can verify if rule specifications in PPDR can match inference
step premises and conclusions as described in Section 2.3. SCL is used as a base
language for PPDR since SCL it is an abstract language and translators from
first-order languages into SCL are usually easy to implement.

4 Related Work

Inference rules are often implemented rather than specified declaratively. Some
systems, however, allow users to specify inference rules. For instance, Isabelle [12],
as one of the many theorem provers that adopted Edinburgh LCF [6] techniques
of programming inference rules, is an inference engine where users can spec-
ify their own rules (LCF and Isabelle are also called programmable theorem
provers). Although Isabelle is a powerful engine in the sense that it supports a
wide range of kinds of inference rules and logics, its rule specifications are neither
abstract nor declarative. Thus, using the LCF meta-language, users need to pro-
gram, for example, how a specific unification should be implemented. Moreover,
it may be very difficult and sometimes impossible to combine Isabelle proofs de-
pending on which set of rules was used to generate each proof. Nevertheless,
rule specifications in Isabelle are not intended to be used for matching logical
sentences written in representation languages other than the one specified in
Isabelle.

JAPE [14] is a proof editor where users can interact with the editor to create
or modify proofs. Proofs are created and modified according to abstract rule
specifications [4]. The JAPE notation for specifying rules has many similarities
with PPDR including syntax conditions that are called provisos. One difficulty
in using the JAPE meta-language is that it requires encoding syntactic cate-
gories for every new language used for representing logical sentences. So, it does
have limited capability for identifying different classes of expressions however,
it may not be considered simple to use this capability.

Similar to PPDR, the OWL Rule Language (ORL)[7] is another rule specifi-
cation language also intended to be used for the Semantic Web. ORL claims to
add expressive power to OWL and to be a syntactical and semantical extension
of OWL itself. Also, ORL rules are basically represented in OWL. The “human
readable” version of ORL as described in the paper is too simple to accommo-
date the complexity of rules as described in this paper. Moreover, ORL does
not address the problem of integrating proofs provided from distinct engines
and with expressions represented in different languages.

The current PPDR is expected to be extended to incorporate some of the use-
ful aspects of the rule specification languages described above. For example, we
expect PPDR to become as abstract as the JAPE notation but without having
the same difficulties of encoding syntactic categories for several representation
languages. The IWBase may be a possible alternative to avoid the registration
of new syntactic categories if a wide number of rules can be translated into a
common language such as SCL. As opposed to ORL, PPDR does not aim to
have a unified representation for “proper” inference rules (the primitive rules
implemented in inference engines) and rules derived from primitive rules. In
fact, the OWL rule language assumes that PML can be used to describe derived
rules and theorems can be described as derived rules. Therefore, rules called
“production rules”, “business rules” and “event-condition-action rules” can be
defined in terms of PML proofs even without the need of PPDR.

There is also related work in proof transformation, proof rewriting, and

matching. The closest to our work is [1] on matching patterns initially used for
pruning explanations of earlier description logics [8, 3] and then later rewriting
work [2]. This work was aimed initially at matching for pruning, then matching
more generally, and in term rewriting for non-standard inferences and finding
unifiers. Moreover, the initial focus on the earlier work was to represent patterns
to match concept descriptions (for presentation and pruning) and the focus
on this work is to represent patterns in rules (for both abstraction and rule
combination).

5 Conclusions

In this paper, we have introduced PPDR - a Proof Protocol for Deductive Rea-
soning. PPDR provides a language that supports distributed hybrid question
answering. By providing a language for encoding inference rules, it facilitates
proof combinations (thereby supporting interoperability) inference rule specifi-
cation (thereby supporting justification access and presentation), pattern spec-
ification (thereby supporting abstraction and matching), and proof checking
(thereby improving checking and reliability of question answering systems).

PPDR provides a language that supports abstract, uniform encodings of in-
ference rules. Particularly in combination with the Proof Markup Language,
it provides a flexible and necessary foundation enabling proof presentation, ab-
straction, and combination thereby providing an infrastructure for interactive
and interoperable explanations of answers from hybrid systems.

References

[1] Franz Baader, Ralf Kiisters, Alexander Borgida, and Deborah L. McGuin-
ness. Matching in Description Logics. Journal of Logic and Computation,
9(3):411-447, 1999.

[2] Franz Baader, Ralf Kiisters, and Ralf Molitor. Rewriting Concepts Us-
ing Terminologies. In A.G. Cohn, F. Giunchiglia, and B. Selman, editors,
Proceedings of the Seventh International Conference on Knowledge Rep-
resentation and Reasoning (KR2000), pages 297-308, San Francisco, CA,
2000. Morgan Kaufmann Publishers.

[3] Alex Borgida and Deborah L. McGuinness. Asking Queries about Frames.
In Proceedings of Fifth International Conference on the Principles of
Knowledge Representation and Reasoning, Cambridge, Massachusetts,
November 1996. Morgan Kaufmann.

[4] Richard Bornat and Bernard Sufrin. Roll your own JAPE logic, jape version
3.2 edition, September 1997.

[5] Michael R. Genesereth and Richard Fikes. Knowledge interchange format,
version 3.0 reference manual. Technical Report Logic-92-1, Computer Sci-
ence Department, Stanford University, Stanford, CA, USA, 1992.

[6] Michael J. C. Gordon, Robin Milner, and Christopher P. Wadsworth. Ed-
inburgh LCF: A Mechanised Logic of Computation. Number 78 in LNCS.
Springer-Verlag, 1979.

[7] Ian Horrocks and Peter F. Patel-Schneider. A proposal for an owl rules
language. In Proc. of the Thirteenth International World Wide Web Con-
ference (WWW 2004). ACM, 2004. To appear.

[8] Deborah L. McGuinness. Ezplaining Reasoning in Description Logics. PhD
thesis, Rutgers University, 1996.

[9] Deborah L. McGuinness and Paulo Pinheiro da Silva. Infrastructure for
Web Explanations. In D. Fensel, K. Sycara, and J. Mylopoulos, editors,
Proceedings of 2nd International Semantic Web Conference (ISWC2003),
LNCS-2870, pages 113-129, Sanibel, FL, USA, October 2003. Springer.

[10] Deborah L. McGuinness and Paulo Pinheiro da Silva. Registry-Based Sup-
port for Information Integration. In Proceedings of IJCAI-2003 Workshop
on Information Integration on the Web (IIWeb-03), pages 117-122, Aca-
pulco, Mexico, August 2003.

[11] Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontol-
ogy Language Overview. Technical report, World Wide Web Consortium
(W3C), December 9 2003. Proposed Recommendation.

[12] Lawrence C. Paulson. Isabelle: the next 700 theorem provers. In
P. Odifreddi, editor, Logic and Computer Science, pages 361-386. Aca-
demic Press, 1990.

[13] Paulo Pinheiro da Silva, Deborah L. McGuinness, and Richard Fikes. A
Proof Markup Language for Semantic Web Services. Technical Report KSL-
04-01, Knowledge Systems Laboratory, Stanford University, Stanford, CA,
USA, January 2004.

[14] Bernard Sufrin and Richard Bornat. Encoding a natural deduction system
for the jape proof editor. Technical Report PRG-TR-9-98, Programming
Research Group, Oxford University Computing Laboratory, 1998.

