
UMLi: The Unified Modeling Language for

Interactive Applications

Paulo Pinheiro da Silva and Norman W. Paton

Department of Computer Science, University of Manchester

Oxford Road, Manchester M13 9PL, England, UK.

e-mail: {pinheirp,norm}@cs.man.ac.uk

Abstract

User interfaces (UIs) are essential components of most software sys-
tems, and significantly affect the effectiveness of installed applications. In
addition, UIs often represent a significant proportion of the code delivered
by a development activity. However, despite this, there are no modelling
languages and tools that support contract elaboration between UI devel-
opers and application developers. The Unified Modeling Language (UML)
has been widely accepted by application developers, but not so much by
UI designers. For this reason, this paper introduces the notation of the
Unified Modelling Language for Interactive Applications (UMLi), that ex-
tends UML, to provide greater support for UI design. UI elements elicited
in use cases and their scenarios can be used during the design of activities
and UI presentations. A diagram notation for modelling user interface
presentations is introduced. Activity diagram notation is extended to de-
scribe collaboration between interaction and domain objects. Further, a
case study using UMLi notation and method is presented.

1 Introduction

UML [9] is the industry standard language for object-oriented software design.
There are many examples of industrial and academic projects demonstrating
the effectiveness of UML for software design. However, most of these success-
ful projects are silent in terms of UI design. Although the projects may even
describe some architectural aspects of UI design, they tend to omit important
aspects of interface design that are better supported in specialist interface de-
sign environments [8]. Despite the difficulty of modelling UIs using UML, it
is becoming apparent that domain (application) modelling and UI modelling
may occur simultaneously. For instance, tasks and domain objects are interde-
pendent and may be modelled simultaneously since they need to support each
other [10]. However, task modelling is one of the aspects that should be consid-
ered during UI design [6]. Further, tasks and interaction objects (widgets) are



interdependent as well. Therefore, considering the difficulty of designing user
interfaces and domain objects simultaneously, we believe that UML should be
improved in order to provide greater support for UI design [3, 7].

This paper introduces the UMLi notation which aims to be a minimal exten-
sion of the UML notation used for the integrated design of applications an their
user interfaces. Further, UMLi aims to preserve the semantics of existing UML
constructors since its notation is built using new constructors and UML exten-
sion mechanisms. This non-intrusive approach of UMLi can be verified in [2],
which describes how the UMLi notation introduced in this paper is designed in
the UML meta-model.

UMLi notation has been influenced by model-based user interface develop-
ment environment (MB-UIDE) technology [11]. In fact, MB-UIDEs provide
a context within which declarative models can be constructed and related, as
part of the user interface design process. Thus, we believe that the MB-UIDE
technology offers many insights into the abstract description of user interfaces
that can be adapted for use with the UML technology. For instance, MB-UIDE
technology provides techniques for specifying static and dynamic aspects of user
interfaces using declarative models. Moreover, as these declarative models can
be partially mapped into UML models [3], it is possible to identify which UI
aspects are not covered by UML models.

The scope of UMLi is restricted to form-based user interfaces. However,
form-based UIs are widely used for data-intensive applications such as database
system applications and Web applications and UMLi can be considered as a
baseline for non-form-based UI modelling. In this case, modifications might be
required in UMLi for specifying a wider range of UI presentations and tasks.

To introduce the UMLi notation, this paper is structured as follows. MB-
UIDE’s declarative user interface models are presented in terms of UMLi dia-
grams in Section 2. Presentation modelling is introduced in Section 3. Activity
modelling that integrates use case, presentation and domain models is presented
in Section 4. The UMLi method is introduced in Section 5 when a case study ex-
emplifying the use of the UMLi notation is presented along with the description
of the method. Conclusions are presented in Section 6.

2 Declarative User Interface Models

A modelling notation that supports collaboration between UI developers and
application developers should be able to describe the UI and the application at
the same time. From the UI developer’s point of view, a modelling notation
should be able to accommodate the description of users requirements at appro-
priate levels of abstraction. Thus, such a notation should be able to describe
abstract task specifications that users can perform in the application in order to
achieve some goals. Therefore, a user requirement model is required to describe
these abstract tasks. Further, UI sketches drawn by users and UI developers can
help in the elicitation of additional user requirements. Therefore, an abstract

presentation model that can present early design ideas is required to describe



these UI sketches. Later in the design process, UI developers could also refine
abstract presentation models into concrete presentation models, where widgets
are selected and customised, and their placement (layout) is decided.

From the application developer’s point of view, a modelling notation that
integrates UI and application design should support the modelling of application
objects and actions in an integrated way. In fact, the identification of how user
and application actions relate to a well-structured set of tasks, and how this set
of tasks can support and be supported by the application objects is a challenging
activity for application designers. Therefore, a task model is required to describe
this well-structured set of tasks. The task model is not entirely distinct from the
user requirement model. Indeed, the task model can be considered as a more
structured and detailed view of the user requirement model.

The application objects, or at least their interfaces, are relevant for UI de-
sign. In fact, these interfaces are the connection points between the UI and the
underlying application. Therefore, the application object interfaces compose an
application model. In an integrated UI and application development environ-
ment, an application model is naturally produced as a result of the application
design.

UMLi aims to show that using a specific set of UML constructors and dia-
grams, as presented in Figure 1, it is possible to build declarative UI models.
Moreover, results of previous MB-UIDE projects can provide experience as to
how the declarative UI models should be inter-related and how these models
can be used to provide a declarative description of user interfaces. For instance,
the links (a) and (c) in Figure 1 can be explained in terms of state objects, as
presented in Teallach [5]. The link (d) can be supported by techniques from TRI-
DENT [1] to generate concrete presentations. In terms of MB-UIDE technology
there is not a common sense of the models that might be used for describing a
UI. UMLi does not aim to present a new user interface modelling proposal, but
to reuse some of the models and techniques proposed for use in MB-UIDEs in
the context of UML.

Figure 1: UMLi declarative user interface models.



3 User Interface Diagram

User interface presentations, the visual part of user interfaces, can be modelled
using object diagrams composed of interaction objects, as shown in Figure 2(a).
These interaction objects are also called widgets or visual components. The
selection and grouping of interaction objects are essential tasks for modelling
UI presentations. However, it is usually difficult to perform these tasks due to
the large number of interaction objects with different functionalities provided
by graphical environments. In a UML-based environment, the selection and
grouping of interaction objects tends to be even more complex than in UI de-
sign environments because UML does not provide graphical distinction between
domain and interaction objects. Further, UML treats interaction objects in the
same way as any other objects [3]. For instance, in Figure 2(a) it is not easy to
see that the Results Displayer is contained by the SearchBookUI FreeContainer.
Considering these presentation modelling difficulties, this section introduces the
UMLi user interface diagram, a specialised object diagram used for the concep-
tual modelling of user interface presentation.

(a) (b)

Figure 2: An abstract presentation model for the SearchBookUI can be modelled
as an object diagram of UML, as presented in (a). The same presentation can
alternatively be modelled using the UMLi user interface diagram, as presented
in (b).

3.1 User Interface Diagram Notation

The SearchBookUI abstract presentation modelled using the user interface dia-
gram is presented in Figure 2(b). The user interface diagram is composed of six
constructors that specify the role of each interaction object in a UI presentation.

• FreeContainers, , are rendered as dashed cubes. They are top-level
interaction objects that cannot be contained by any other interaction ob-
ject, e.g. top-level windows. They are also called presentation units since
the interaction objects in a FreeContainer are always presented at the same
time. An interaction object can be visible and disabled, which means that
the user can see the object but cannot interact with it.



• Containers, , are rendered as dashed cylinders. They can group inter-
action objects that are not FreeContainers. Containers provide a grouping
mechanism for the designing of UI presentations.

• Inputters, ∇, are rendered as downward triangles. They are responsible
for receiving information from users.

• Displayers, 4, are rendered as upward triangles. They are responsible
for sending visual information to users.

• Editors, �, are rendered as diamonds. They are interaction objects that
are simultaneously Inputters and Displayers.

• ActionInvokers, , are rendered as a pair of semi-overlapped triangles
pointing to the right. They are responsible for receiving information from
users in the form of events.

Graphically, Containers, Inputters, Displayers, Editors and ActionInvokers
must be placed into a FreeContainer. Additionally, the overlapping of the bor-
ders of interaction objects is not allowed. In this case, the “internal” lines of
Containers and FreeContainers, in terms of their two-dimensional representa-
tions, are ignored.

3.2 From an Abstract to a Concrete Presentation

The complexity of user interface presentation modelling can be reduced by work-
ing with a restricted set of abstract interaction objects, as specified by the user
interface diagram notation. However, a presentation modelling approach as
proposed by the UMLi user interface diagram is possible since form-based pre-
sentations respect the Abstract Presentation Pattern1 (APP) in Figure 3. Thus,
a user interface presentation can be described as an interaction object acting as
a FreeContainer. The APP also shows the relationships between the abstract
interaction objects.

As we can see, the APP is environment-independent. In fact, a UI presen-
tation described using the user interface diagram can be implemented by any
object-oriented programming language, using several toolkits. Widgets should
be bound to the APP in order to generate a concrete presentation model. In
this way, each widget should be classified as a FreeContainer, Container,
Inputter, Displayer, Editor or ActionInvoker. The binding of widgets to
the APP can be described using UML [3].

Widget binding is not efficient to yield a final user interface implementation.
In fact, UMLi is used for UI modelling and not for implementation. However,
we believe that by integrating UI builders with UMLi-based CASE tools we can

1The specialised constructors under the Inputter, Displayer, Editor and ActionInvoker
classes in Figure 3 indicate that many concrete interaction objects (widgets) can be bound to
each one of these classes. This constructor is an adaptation of a similar one used in Gamma
et al. [4] (see page 233).



Figure 3: The Abstract Presentation Pattern

produce environments where UIs can be modelled and developed in a system-
atic way. For instance, UI builder facilities may be required for adjusting UI
presentation layout and interaction object’s colour, size and font.

4 Activity Diagram Modelling

UML interaction diagrams (sequence and collaboration diagrams) are used for
modelling how objects collaborate. Interaction diagrams, however, are limited
in terms of workflow modelling since they are inherently sequential. Therefore,
concurrent and repeatable workflows, and especially those workflows affected by
users decisions, are difficult to model and interpret from interaction diagrams.

Workflows are easily modelled and interpreted using activity diagrams. In
fact, Statechart constructors provide a graphical representation for concurrent
and branching workflows. However, it is not so natural to model object col-
laboration in activity diagrams. Improving the ability to describe object col-
laboration and common interaction behaviour, UMLi activity diagrams provide
greater support for UI design than UML activity diagrams.

This section explains how activities can be modelled from use cases, how
activity diagrams can be simplified in order to describe common interactive
behaviours, and how interaction objects can be related to activity diagrams.

4.1 Use Cases and Use Case Scenarios

Use case diagrams are normally used to identify application functionalities.
However, use case diagrams may also be used to identify interaction activi-
ties. For instance, a �communicates� association between a use case and an
actor indicates that the actor is interacting with the use case. Therefore, for



example, in Figure 4 the CollectBook use case cannot identify an interaction
activity since its association with Borrower is not a �communicates� associa-
tion. Indeed, the CollectBook use case identifies a functionality not supported
by the application.

Figure 4: A use case diagram for the BorrowBook use case with its component
use cases.

Use case scenarios can be used for the elicitation of actions [12]. Indeed, ac-
tions are identified by scanning scenario descriptions looking for verbs. However,
actions may be classified as Inputters, Displayers, Editors or ActionInvokers.
For example, Figure 5 shows a scenario for the SearchBook use case in Figure 4.
Three interaction objects can be identified in the scenario: ∇providing that re-
ceives book’s title, author and year information; ∇specify that specifies some
query details; and 4displays that presents the results of the query. Therefore,
UMLi can start the elicitation of interaction objects, using this transformation
of actions into interaction objects, during requirements analysis. These action
transformations are often possible since the interaction objects of UMLi are ab-
stract ones. The elicitation of these interaction objects early, as describe here,
is important since it provides an initial description for abstract presentations.
Indeed, user interface diagrams can initially be composed of interaction objects
elicited from scenarios.

John is looking for a book. He can check if such book is in the library catalogue

∇providing its title, authors, year, or a combination of this information. Addi-

tionally, John can ∇specify if he wants an exact or an approximate match, and

if the search should be over the entire catalogue or the result of the previous

query. Once the query has been submitted, the system 4displays the details of

the matching books, if any.

Figure 5: A scenario for the SearchBook use case.



4.2 From Use Cases to Activities

UMLi assumes that a set of activity diagrams can describe possible user interac-
tions since this set can describe possible application workflows from application
entry points. Indeed, transitions in activity diagrams are inter-object transi-
tions, such as those transitions between interaction and domain objects that
can describe interaction behaviours. Based on this assumption, those activity
diagrams that belong to this set of activity diagrams can be informally classified
as interaction activity diagrams. Activities of interaction activity diagrams can
also be informally classified as interaction activities. The difficulty with this
classification, however, is that UML does not specify any constructor for mod-
elling application entry points. Therefore, the process of identifying in which
activity diagram interactions start is unclear.

The initial interaction state constructor used for identifying an application’s
entry points in activity diagrams is introduced in UMLi. This constructor is
rendered as a solid square,

�
, and it is used as the UML initial pseudo-state [9],

except that it cannot be used within any state. A top level interaction activ-

ity diagram must contain at least one initial interaction state. Figure 6
shows a top level interaction activity diagram for a library application.

Figure 6: Modelling an activity diagram from use cases using UMLi.

Use cases that communicate directly with actors are considered candidate

interaction activities in UMLi. Thus, we can define a top level interaction ac-

tivity as an activity which is related to a candidate interaction activity. This
relationship between a top level interaction activity and a candidate interaction
activity is described by a realisation relationship, since activity diagrams can
describe details about the behaviour of candidate interaction activities. The
diagram in Figure 6 is using the UMLi activity diagram notation explained in
the next section. However, we can clearly see in the diagram which top level
interaction activity realises which candidate interaction activity. For instance,
the SearchBook activity realises the SearchBook candidate interaction activity
modelled in the use case diagram in Figure 4.



In terms of UI design, interaction objects elicited in scenarios are primitive
interaction objects that must be contained by FreeContainers (see the APP in
Figure 3). Further, these interaction objects should be contained by FreeCon-
tainers associated with top-level interaction activities, such as the SearchBookUI
FreeContainer in Figure 6, for example. Therefore, interaction objects elicited
from scenarios are initially contained by FreeContainers that are related to top-
level interaction through the use of a �presents� object flow, as described in
Section 4.4. In that way, UI elements can be imported from use case diagrams
to activity diagrams. For example, the interaction objects elicited in Figure 5
are initially contained by the SearchBookUI presented in Figure 6.

4.3 Selection States

Statechart constructors for modelling transitions are very powerful since they
can be combined in several ways, producing many different compound transi-
tions. In fact, simple transitions are suitable for relating activities that can
be executed sequentially. A combination of transitions, forks and joins is
suitable for relating activities that can be executed in parallel. A combination
of transitions and branches is suitable for modelling the situation when only
one among many activities is executed (choice behaviour). However, for the de-
signing of interactive applications there are situations where these constructors
can be held to be rather low-level, leading to complex models. The following
behaviours are common interactive application behaviours, but usually result in
complex models.

• The order independent behaviour is presented in Figure 7(a). There,
activities A and B are called selectable activities since they can be acti-
vated in either order on demand by users who are interacting with the
application. Thus, every selectable activity should be executed once dur-
ing the performance of an order independent behaviour. Further, users are
responsible for selecting the execution order of selectable activities. An or-
der independent behaviour should be composed of one or more selectable
activities. An object with the execution history of each selectable activity
(SelectHist in Figure 7(a)) is required for achieving such behaviour.

• The optional behaviour is presented in Figure 7(b). There, users can
execute any selectable activity any number of times, including none. In
this case, users should explicitly specify when they are finishing the Select
activity. Like the order independent behaviour, the optional behaviour
should be composed of one or more selectable activities.

• The repeatable behaviour is presented in Figure 7(c). Unlike the order
independent and optional behaviours, a repeatable behaviour should have
only one associated activity. A is the associated activity of the repeat-
able behaviour in Figure 7. Further, a specific number of times that the
associated activity can be executed should be specified. In the case of
the diagram in Figure 7(c), this number is identified by the value of X.



An optional behaviour with one selectable activity can be used when a
selectable activity can be executed an unspecified number of times.

(a)

(b)
(c)

Figure 7: The UML modelling of three common interaction application be-
haviours. An order independent behaviour is modelled in (a). An optional

behaviour is modelled in (b). A repeatable behaviour is modelled in (c).

As optional, order independent and repeatable behaviours are common in
interactive systems [5], UMLi proposes a simplified notation for them. The no-
tation used for modelling an order independent behaviour is presented in Fig-
ure 8(a). There we can see an order independent selector, rendered as a circle
overlying a plus signal, ⊕, connected to the activities A and B by return transi-

tions, rendered as solid lines with a single arrow at the selection state end and
a double arrow at the selectable activity end. The order independent selector
identifies an order independent selection state. The double arrow end of return
transitions identify the selectable activities of the selection state. The distinc-
tion between the selection state and its selectable activities is required when
selection states are also selectable activities. Furthermore, a return transition
is equivalent of a pair of Statechart transitions, one single transition connecting
the selection state to the selectable activity, and one non-guarded transition
connecting the selectable activity to the selection state, as previously modelled
in Figure 7(a). In fact, the order independent selection state notation can be
considered as a macro-notation for the behaviour described in Figure 7(a).

(a) (b) (c)

Figure 8: The UMLi modelling of an order independent selection state in (a),
an optional selection state in (b), and a repeatable selection state in (c).



The notations for modelling optional and repeatable behaviours are similar,
in terms of structure, to the order independent selection state. The main dif-
ference between the notation of selection states is the symbols used for their
selectors. The optional selector which identifies an optional selection state is
rendered as a circle overlaying a minus signal, 	. The repeatable selector which
identifies a repeatable selection state2 is rendered as a circle overlaying a times
signal, ⊗. The repeatable selector additionally requires a REP constraint, as
shown in Figure 8(c), used for specifying the number of times that the asso-
ciated activity should be repeated. The value X in this REP constraint is the
X parameter in Figure 7(c). The notations presented in Figures 8(b) and 8(c)
can be considered as macro-notations for the notation modelling the behaviours
presented in Figures 7(b) and 7(c).

4.4 Interaction Object Behaviour

Objects are related to activities using object flows. Object flows are basically
used for indicating which objects are related to each activity, and if the objects
are generated or used by the related activities. Object flows, however, do not
describe the behaviour of related objects within their associated activities. Ac-
tivities that are action states and that have object flows connected to them can
describe the behaviour of related objects since they can describe how methods
may be invoked on these objects. Thus, a complete decomposition of activities
into action states may be required to achieve such object behaviour description.
However, in the context of interaction objects, there are common functions that
do not need to be modelled in detail to be understood. In fact, UMLi pro-
vides five specialised object flows for interaction objects that can describe these
common functions that an interaction object can have within a related activity.
These object flows are modelled as stereotyped object flows and explained as
follows.

• An �interacts� object flow relates a primitive interaction object to an
action state, which is a primitive activity. Further, the object flow indi-
cates that the action state involved in the object flow is responsible for an
interaction between a user and the application. This can be an interaction
where the user is invoking an object operation or visualising the result of an
object operation. The action states in the SpecifyBookDetails activity,
Figure 9, are examples of Inputters assigning values to some attributes of
the SearchQuery domain object. The 4 Results in Figure 9 is an exam-
ple of a Displayer for visualising the result of SearchQuery.SearchBook().
As can be observed, there are two abstract operations specified in the APP
(Figure 3) that have been used in conjunction with these interaction ob-
jects. The setValue() operation is used by Displayers for setting the
values that are going to be presented to the users. The getValue() op-

2UMLi considers a repeatable selection state as a “selection” state since users might have
the possibility of cancelling the repeatable state iteration.



eration is used by Inputters for passing the value obtained from the users
to domain objects.

Figure 9: The SearchBook activity.

• A �presents� object flow relates a FreeContainer to an activity. It spec-
ifies that the FreeContainer should be visible while the activity is ac-
tive. Therefore, the invocation of the abstract setVisible() operation of
the FreeContainer is entirely transparent for the developers. In Figure 9
the SearchBookUI FreeContainer and its contents are visible while the
SearchBook activity is active.

• A �confirms� object flow relates an ActionInvoker to a selection state.
It specifies that the selection state has finished normally. In Figure 9 the
event associated with the “Search” is responsible for finishing the exe-
cution of its related selection state normally. An optional selection state
must have one �confirms� object flow directly or indirectly related to
it. The optional selection state in the SpecifyDetails activity in Fig-

ure 9 has the “Search” directly related to it. The optional selection
state in the SpecifyBookDetails relies on the “Search” that is indi-
rectly related to it. In fact, confirming the optional selection state in



SpecifyDetails a user is also confirming the optional selection state in
SpecifyBookDetails.

• A �cancels� object flow relates an ActionInvoker to any composite ac-
tivity or selection state. It specifies that the activity or selection state has
not finished normally. The flow of control should be re-routed to a previ-
ous state. The “Cancel” object in Figure 9 is responsible for identifying
the user cancelling of the SearchBook activity.

• An �activate� object flow relates an ActionInvoker to an activity. In that
way, the associated activity becomes a triggered activity, that waits for an
event to effectively start, after being activated. This event that triggers
the activity is the defaultEvent presented in the APP (Figure 3).

5 Using UMLi: Method and Case Study

The UMLi method is composed of eight steps. These steps are not intended to
describe a comprehensive method for the modelling of a UI in an integrated way
with the underlying application. For example, these steps could be adapted to
be incorporated by traditional UML modelling methods such as Objectory and
Catalysis.

A case study describing a Library Application [3] is used for exemplifying the
use of the UMLi method. Many results of this case study are used as examples
of the UMLi notation in previous sections.

Step 1 User requirement modelling. Use cases can identify application func-

tionalities. Use cases may be decomposed into other use cases. Scenarios provide

a description of the functionalities provided by use cases.

The use cases in Figure 4 identified some application functionalities. Scenarios
can be used as a textual description of the use case goals. For instance, the
scenario presented in Figure 5 is a textual description of the SearchBook use
case in Figure 4. Further, scenarios can be used for the elicitation of sub-goals
that can be modelled as use cases. Use cases that are sub-goals of another use
case can be related using the �uses� dependency. Thus, the use of �uses�
dependencies creates a hierarchy of use cases. For instance, SearchBook is a
sub-goal of BorrowBook in Figure 4.

Step 2 Interaction object elicitation. Scenarios of less abstract use cases may

be used for interaction object elicitation.

Scenarios can be used for the elicitation of interaction objects, as described in
Section 4.1. In this case, elicited interaction objects are related to the associated
use case. Relating interaction objects directly to use cases can prevent the
elicitation of the same interaction object in two or more scenarios related to
the same use case. Considering that there are different levels of abstraction
for use cases, as described in Step 1, it was identified by the case study that



interaction objects of abstract use cases are also very abstract, and may not be
useful for exporting to activity diagrams. Therefore, the UMLi method suggests
that interaction objects can be elicited from less abstract use cases.

Step 3 Candidate interaction activity identification.

Candidate interaction activities are use cases that communicate directly with
actors, as described in Section 4.1.

Step 4 Interaction activity modelling. A top level interaction activity diagram

can be designed from identified candidate interaction activities. A top level in-

teraction activity diagram must contain at least one initial interaction state.

Figure 6 shows a top level interactive activity diagram for the Library case
study. Top level interaction activities may occasionally be grouped into more
abstract interaction activities. In Figure 6, many top level interaction activ-
ities are grouped by the SelectFunction activity. In fact, SelectFunction

was created to gather these top level interaction activities within a top level
interaction activity diagram. However, the top level interaction activities, and
not the SelectFunction activity, remain responsible for modelling some of the
major functionalities of the application. The process of moving from candidate
interaction activities to top level interaction activities is described in Section 4.2.

Step 5 Interaction activity refining. Activity diagrams can be refined, decom-

posing activities into action states and specifying object flows.

Activities can be decomposed into sub-activities. The activity decomposition
can continue until the action states (leaf activities) are reached. For instance,
Figure 9 presents a decomposition of the SearchBook activity introduced in
Figure 6. The use of �interacts� object flows relating interaction objects to
action states indicates the end of this step.

Step 6 User interface modelling. User interface diagrams can be refined to

support the activity diagrams.

User interface modelling should happen simultaneously with Step 5 in order to
provide the activity diagrams with the interaction objects required for describing
action states. There are two mechanisms that allow UI designers to refine a
conceptual UI presentation model.

• The inclusion of complementary interaction objects allows designers to
improve the user’s interaction with the application.

• The grouping mechanism allows UI designers to create groups of interac-
tion objects using Containers.

At the end of this step it is expected that we have a conceptual model of the
user interface. The interaction objects required for modelling the user interface
were identified and grouped into Containers and FreeContainers. Moreover, the
interaction objects identified were related to domain objects using action states
and UMLi flow objects.



Step 7 Concrete presentation modelling. Concrete interaction objects can be

bound to abstract interaction objects.

The concrete presentation modelling begins with the binding of concrete inter-
action objects (widgets) to the abstract interaction objects that are specified
by the APP. Indeed, the APP is flexible enough to map many widgets to each
abstract interaction object.

Step 8 Concrete presentation refinement. User interface builders can be used

for refining user interface presentations.

The widget binding alone is not enough for modelling a concrete user interface
presentation. Ergonomic rules presented as UI design guidelines can be used
to automate the generation of the user interface presentation. Otherwise, the
concrete presentation model can be customised manually, for example, by using
direct manipulation.

6 Conclusions

UMLi is a UML extension for modelling interactive applications. UMLi makes
extensive use of activity diagrams during the design of interactive applications.
Well-established links between use case diagrams and activity diagrams explain
how user requirements identified during requirements analysis are described in
the application design. The UMLi user interface diagram introduced for mod-
elling abstract user interface presentations simplifies the modelling of the use of
visual components (widgets). Additionally, the UMLi activity diagram notation
provides a way for modelling the relationship between visual components of the
user interface and domain objects. Finally, the use of selection states in activity
diagrams provides a simplification for modelling interactive systems.

The reasoning behind the creation of each new UMLi constructor and con-
straint has been presented throughout this paper. The UMLi notation was en-
tirely modelled in accordance to the UMLi meta-model specifications [2]. This
demonstrates that UMLi is respecting its principle of being a non-intrusive ex-
tension of UML, since the UMLi meta-model does not replace the functionalities
of any UML constructor [2]. Moreover, the presented case study indicates that
UMLi may be an appropriate approach in order to improve UML’s support
for UI design. In fact, the UIs of the presented case study were modelled us-
ing fewer and simpler diagrams than using standard UML diagrams only, as
described in [3].

As the UMLi meta-model does not modify the semantics of the UML meta-
model, UMLi is going to be implemented as a plug-in feature of the ARGO/UML
case tool. This implementation of UMLi will allow further UMLi evaluations
using more complex case studies.

Acknowledgements. The first author is sponsored by Conselho Nacional de
Desenvolvimento Cient́ıfico e Tecnológico - CNPq (Brazil) – Grant 200153/98-6.



References

[1] F. Bodart, A. Hennebert, J. Leheureux, I. Provot, B. Sacre, and J. Van-
derdonckt. Towards a Systematic Building of Software Architectures: the
TRIDENT Methodological Guide. In Design, Specification and Verification

of Interactive Systems, pages 262–278, Vienna, 1995. Springer.

[2] P. Pinheiro da Silva. On the Semantics of the Unified Modeling Language
for Interactive Applications. In preparation.

[3] P. Pinheiro da Silva and N. Paton. User Interface Modelling with UML.
In Proceedings of the 10th European-Japanese Conference on Information

Modelling and Knowledge Representation, Saariselkä, Finland, May 2000.
IOS Press. (To appear).

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: El-

ements of Reusable Object-Oriented Software. Addison-Wesley, Reading,
MA, 1995.

[5] T. Griffiths, P. Barclay, J. McKirdy, N. Paton, P. Gray, J. Kennedy,
R. Cooper, C. Goble, A. West, and M. Smyth. Teallach: A Model-Based
User Interface Development Environment for Object Databases. In Pro-

ceedings of UIDIS’99, pages 86–96, Edinburgh, UK, September 1999. IEEE
Press.

[6] P. Johnson. Human Computer Interaction: Psychology, Task Analysis and

Software Engineering. McGraw-Hill, Maidenhead, UK, 1992.

[7] S. Kovacevic. UML and User Interface Modeling. In Proceedings of

UML’98, pages 235–244, Mulhouse, France, June 1998. ESSAIM.

[8] B. Myers. User Interface Software Tools. ACM Transactions on Computer-

Human Interaction, 2(1):64–103, March 1995.

[9] Object Management Group. OMG Unified Modeling Language Specifica-

tion, June 1999. Version 1.3.

[10] M. B. Rosson. Integrating Development of Task and Object Models. Com-

munications of the ACM, 42(1):49–56, January 1999.

[11] P. Szekely. Retrospective and Challenges for Model-Bases Interface De-
velopment. In Computer-Aided Design of User Interfaces, pages xxi–xliv,
Namur, Belgium, 1996. Namur University Press.

[12] R. Tam, D. Maulsby, and A. Puerta. U-TEL: A Tool for Eliciting User
Task Models from Domain Experts. In Proceedings of Intelligent User

Interfaces’98, pages 77–80, San Francisco, CA, January 1998. ACM Press.


