
Abstract

We describe here some of the research underly-
ing the development of KANI (Knowledge As-
sociates for Novel Intelligence), a hybrid system
that combines large scale information extraction
(IE) with knowledge representation (KR). The
combination of these two technologies raises
numerous research problems, such as an evalua-
tion and understanding of the requirements that
KR puts on IE and vice-versa, the identification
of useful intermediate results in the process of
transforming information from unstructured and
massive collections into small and precise
chunks suitable for automated reasoning, and
how extend traditional explanation techniques to
provide the ability to trace provenance of infor-
mation through these transformations.

1. Introduction
A critical problem for supporting intelligence analysis
over large collections of data is to provide that data in a
form that is understandable, traceable, and capable of
being used with advanced tools for searching, reasoning,
viewing, etc. We describe here some of the research un-
derlying the development of KANI (Knowledge Associ-
ates for Novel Intelligence), a hybrid system that com-
bines large scale information extraction with automated
reasoning and other technologies. In particular, we dis-
cuss the stages in a pipeline from unstructured data to
actionable knowledge, and describe how the processing
at each of these stages enables increasingly powerful
analysis tools. We also describe how information flowing
along this pipeline can be traced back to its sources.

2. Background
The KANI project began with the belief that one of the
most difficult problems in knowledge representation
(KR), the so-called “knowledge acquisition bottleneck,”
could be addressed by bringing to bear information ex-
traction (IE) technology. At first glance, this appears a
natural connection to make; IE systems focus on unstruc-
tured data (in our research we limit our examples to text,
however significant progress in being made in analysis of
other media) and produce some simple structure, whereas
KR systems focus on structured data and produce in-
ferred information or check consistency.
The combination of these two technologies, however,
proved quite a challenge, and raised numerous research
problems that have forced us to reevaluate each of the
basic technologies. One very novel result, discussed in
Section 3, is to consider the transformation of informa-
tion from unstructured and massive collections into small
and precise chunks suitable for automated reasoning, and
to identify stages in the transformation that produce re-
sults in a form that can enable tools that increase in
power and utility as information moves to successive
stages.
Another novel result, discussed in Section 4, is an
evaluation and understanding of the requirements that
KR puts on IE and vice-versa.
Finally, as discussed in Section 5, we have had to signifi-
cantly extend our explanation facilities to provide the
ability to trace provenance of information through these
successive stages.

3. The KANI Pipeline
Turning unstructured data into formally represented
knowledge happens in successive stages in an informa-

Tracking Information Extraction from Intelligence Documents

Christopher Welty1, J. William Murdock1, Paulo Pinheiro da Silva2, Deborah McGuinness2,
David Ferrucci1, Richard Fikes2,

1IBM Watson Research Center
19 Skyline Drive

Hawthorne, NY 10532, USA
{murdockj,ferrucci,welty}@us.ibm.com

2Knowledge Systems Laboratory
Stanford University

Stanford, CA 94305, USA
{pp,dlm,fikes}@ksl.stanford.edu

Keywords: Novel Intelligence from Massive Data, Information Extraction and Link Analysis

tion pipeline, each requiring more resources to produce,
and enabling more powerful tools. We envision the ana-
lyst using the more advanced tools in each stage to fur-
ther focus the processing for the next stage. In addition,
at each stage the underlying formats, representations, and
ontologies may be different, and we must be able to track
the sources of information produced across these
changes.

3.1 Keyword Indexing
The simplest and most scalable processing is the genera-
tion of an inverted index to support keyword search. Al-
though techniques such as link analysis, query expansion,
etc., can offer minor improvements, this approach is gen-
erally very low in precision. In addition to its current
established usage, we consider the function of keyword
search to be domain corpus production. We employ re-
call-improving techniques such as query expansion to
reduce the size of the target corpus to the scale required
by the next stage of processing (information extraction) –
this is typically 1-2 orders of magnitude.

3.2 Information Extraction
Information extraction (IE) in general can be viewed as
the analysis of unstructured information to assign labels
(or annotations) that carry some semantics to regions of
the data. The canonical example would be to label the
text “George Bush” as Person. The field has advanced
considerably since these beginnings, and are well repre-
sented by the ACE program (ACE 2004), participants in
which produce annotations for entities (Person, Organiza-
tion, etc.), relations (partOf, citizenOf, etc.), and co-
reference analysis.
While almost any kind of information processing can be
folded into an information extraction view, in our system,
IE components play the role of providing relatively shal-
low processing in order to be scalable. In particular, this
stage limits itself to processing data in well-defined
chunks (such as documents), and performs the same
analysis on each chuck independently. As a result, IE
processing scales linearly with the size of the domain
corpus.
The value added by this stage of processing should be
fairly clear: search queries can be augmented with more
semantic information in order to increase precision. We
have called this semantic search, and in addition to im-
proved search capabilities, we consider the function of
semantic search to be focused corpus production. The
analyst uses the features of semantic search to further
focus the corpus on relevant documents to the task at
hand, in order to reduce the scale to that required by the
next stage. This is typically another order of magnitude.

3.3 Coreference Across Documents
The annotations produced in the IE stage are used as in-
put to corpus-level processing, the most important to our
purposes of which is coreference analysis – the identifi-
cation of individual entities that are mentioned (and an-

notated) in multiple places. Many of our IE components
produce coreference analysis within chunks, but connect-
ing these results across the entire corpus clearly requires
processing that can collect information across the chunks,
and thus will typically scale at a polynomial rate. In our
experience, the most critical properties of co-reference
are recognition of aliases and nicknames, common spell-
ing variations of names (especially in other languages),
common diminutives, abbreviations, etc.
Co-reference errors are probably the most noticeable of
all the types of errors automated analysis produces. We
have found that users expect the most common and well-
known entities (e.g. countries, states, cities, and all their
abbreviations, famous people and their nicknames, etc.)
to have very high recall, and the least common entities to
have very high precision.
The value added by this stage of processing is to enable
queries on specific entities. While semantic search re-
sults are typically documents that must be read, co-
reference analysis enables searching for extracted facts
about individual entities (e.g. what relations have been
extracted), and we call this fact search.

3.4 Knowledge Integration
Although it is not required, the data produced in the first
three stages of our system are all based on the same un-
derlying format (discussed in Ferrucci&Lally, 2004),
which is simple extension of an OO programming model
with a tight programmatic API and a loose semantics
(that is, the semantics of a data model can be interpreted
by software as the programmers choose). Using the in-
formation in more formal and general-purpose reasoning
components requires a representation with a clearly
specified semantics. In our work, we have focused on
OWL, the first standardized KR language, as this repre-
sentation.
OWL was a good choice for two primary reasons: it pro-
vides a natural basis for representing the kind of informa-
tion being extracted from unstructured sources (entities
and binary relations); as a popular standard, there are a
wealth of tools available for it.
Moving the results of unstructured analysis into OWL is
not a simple task, however. The semantics of the infor-
mation extracted in the previous stages is not always pre-
cise, and the data itself is full of precision and recall er-
rors. While we can hope to improve on the precision and
recall of the previous stages, we take this problem to be
fundamental: how can we make use of the results of IE in
a formal reasoning setting? This question is addressed in
detail in the next section.
The process of mapping the information from the previ-
ous stages in OWL is analogous to the general problem
of semantic integration, and we have called it knowledge
integration. The result of knowledge integration, an
OWL knowledge-base that can be viewed as a graph,
provides the ability to use OWL-based reasoning to per-
form more sophisticated deductive search. For example,
we can express axioms of spatial or temporal contain-

ment in OWL, and conclude obvious (but nevertheless
implicit) results, such as a person in Paris is also in
France.
The knowledge integration problem ranges from loga-
rithmic to (worst case) exponential in complexity, de-
pending on the specific reasoning requirements.

3.5 Knowledge Selection
OWL has a number of expressive limitations, and in or-
der to enable deeper and more sophisticated reasoning,
we need to map our data from OWL into a more expres-
sive language. In our work, we are using KIF, and thus
another level of transformation is required. Clearly the
additional expressiveness of KIF implies that the ontolo-
gies in KIF will be different than, or at least extensions
to, the ontologies in OWL, potentially requiring further
semantic integration as well as language transformation.
While this is true in general, we have restricted our KIF
ontologies to be axiomatic extensions to the OWL on-
tologies, and thus do not add any terms (classes or rela-
tions).
This requirement, that the OWL and KIF ontologies share
vocabularies, introduces a special requirement for the
handling of relations that, in our KIF ontologies, are
higher arity than two, since OWL ontologies are limited
to unary and binary relations. Our approach to this prob-
lem is described in (Welty & Fikes, 2005).
The reasoning a KIF-based representation enables is no-
toriously high in computational complexity and memory
requirements. Indeed, there are numerous undecidable
inference problems expressible in KIF, and as a result it
is not possible to precisely determine the complexity of
reasoning in general. In our experience, it is best to ag-
gressively circumscribe problem spaces in order to en-
sure that any reasoning problems will be computable in a
reasonable amount of time. To this end, we introduce a
process of knowledge selection, in which the analyst in-
teracts with the various search mechanisms to populate a
working knowledge base of knowledge relevant to the
current task.

3.6 Advanced Reasoning
The working knowledge base serves as a basis for view-
ing sections of the knowledge-base in OWL, and allow-
ing the user to interactively refine and elaborate their
knowledge of the current task, domain, or scenario. Ad-
vanced reasoning services requiring KIF are accessed by
dynamically converting the selected OWL into KIF.
Some of the advanced reasoning services we are develop-
ing are deductive query answering, temporal reasoning
over the full Allen calculus, hypothesis testing, and con-
text-based reasoning, among others. These are discussed
elsewhere (Fikes, et al, 2005).

4. Requirements for Knowledge Integra-
tion

The central and novel problem introduced by moving
information through these stages is knowledge integra-
tion: moving the results of unstructured analysis into
OWL. Knowledge integration is difficult, and to our
knowledge has not been done before, due to the vastly
different requirements, and different communities, on
each side. As a result, what seems on the surface to be a
natural connection, that is producing structured represen-
tations from unstructured information and then reasoning
over those structures, turns out to be a difficult challenge.
While IE systems claim to produce “structure” where
none existed before, the results, as produced, are not us-
able by traditional systems that require structure – such
as databases and inference engines; the results require
human interpretation. On the other hand, while KR sys-
tems claim to embody intelligent reasoning, they require
as input the results of very sophisticated human process-
ing by experts trained to see distinctions that would make
Sherlock Holmes look simple-minded.
In order to reconcile these differences and bridge the gap,
we are working in three areas: improving the previous
stages to meet the basic requirements of reasoning, relax-
ing some the requirements of reasoning to make the KR-
based components less fragile, and developing a compo-
nent responsible for bridging the remaining gap using
doses of automation and assisted human interaction. Be-
low we list several critical differences and how we are
addressing them.
Relationships. Simple IE systems that produce type an-
notations (such as Person, Organization, etc.) are not of
much use as input to a reasoning system. These end up
in a knowledge base as assertions that something is an
instance of something else. There is very little reasoning
that can be done with only that information. In order for
reasoning to produce useful results, we need relationships
to be extracted as well. For example, there is not much
to conclude from the sentence, “Joe was in Paris,” if all
that was produced was that “Joe” is a person and “Paris”
is a place. In this case, a located-in relation would be
useful as well, as simple spatial containment axioms plus
basic world knowledge (e.g. that Paris is in France)
would allow a reasoner to conclude that Joe was in
France. We use a number of IE components that produce
relations over text.
Annotations vs. Entities. In our experience, relation
annotation by itself creates another problem. Every rela-
tion annotation creates a tuple whose elements do not
appear in other relations, severely limiting the usefulness
of reasoning, since the elements of the relation tuples are
the mentions not the entities. For example, from the sen-
tences, “Joe was in Paris. Fred was in Paris, too,” rela-
tion annotation would produce two tuples, however the
elements of the tuples are not the strings, “Joe”, “Fred”,
and “Paris”, but the regions containing those strings in
the original text, and as a result we have four elements

identified by their position in text, not by their contents.
Thus the first and second occurrences of “Paris” are dif-
ferent elements, and we could not conclude in a reasoner
that, e.g. Joe and Fred are in the same place. In fact,
without connecting these two mentions of Paris (both
within and across documents), we end up with a large list
of unconnected relation tuples. We address this problem
with coreference analysis, making it a critical aspect of
our system. In particular, consider that the output of
knowledge integration is a graph – the graph without
coreference analysis would be a disconnected set of con-
nected pairs.
Precision. Formal reasoning systems are notoriously
intolerant of errors, and IE systems are notoriously prone
to producing them. In particular, logical reasoning be-
comes meaningless in the face of contradiction, most
inference engines will prove any statement to be true if
the knowledge-base is inconsistent to begin with. Al-
though improving precision is an obvious approach to
this problem, we take it as a given that IE processes will
never be perfect, and furthermore even in the presence of
perfect IE, data sources can contradict each other inten-
tionally (e.g. reports from CNN and the pre-war Iraqi
News Agency), and instead focus on making the reason-
ing systems more tolerant of errorful data.
Our simplest technique is to perform limited reasoning
such as semantic constraints that can be checked rapidly,
and that in our evaluations we find to be indicative of IE
errors and not intended contradictions. This leads to a
simple result in which processing semantics gives us an
improvement in precision. For example, consider the
sentence “Joe arrived at Bush Intercontinental.” Several
simple IE components have annotated “Bush Interconti-
nental” as a Person. A separate component annotates the
arrivedAt relationship in this sentence between “Joe” and
“Bush Intercontinental”. Specifying and then checking a
simple range constraint on the arrivedAt relation (that
e.g. you cannot arrive at a person) would give us evi-
dence to consider the person annotation incorrect.
Another simple approach is to use reasoning without con-
tradiction, i.e. so-called “forward chaining”. This allows
us to infer the consequences of material implication axi-
oms without checking for consistency. This can be han-
dled in OWL by partitioning an ontology into two parts:
one containing disjointness axioms, and one that is dis-
joint-free. In OWL, disjointness axioms are the only way
to express a contradiction. For example, in the disjoint-
free ontology module we could express spatial contain-
ment axioms (e.g. the locatedIn relation is transitive),
allowing us to infer the transitive closure of spatial rela-
tions. Interestingly, this technique decreases overall pre-
cision as it tends to propagate errors, however it provides
a useful increase in recall.
It is still the case that the more advanced reasoning ser-
vices require absolute consistency in the knowledge-base.
Another approach we take is to automatically partition
the knowledge-base into smaller consistent chunks.
There are a myriad of possible ways in which we can

create these partitions. One is to add knowledge ex-
tracted from a single document at a time; as soon as a
document is added that causes the partition to be incon-
sistent, remove the knowledge from that document and
close the partition. This approach clearly requires special
treatment for internally inconsistent documents.
Recall. Although recall problems in the extracted data do
not impact the reasoning components, they do immedi-
ately impact the user (this is enhanced by the fact that, as
discussed in the next section, all information is linked to
its sources). We are developing an understanding for
how to explore the tradeoff between precision and recall.
We are considering that different tasks may require dif-
ferent tradeoff choices (i.e. to prefer recall over precision
or vice versa).
It is also important to note that using inference can help
improve recall, however it is a different sense than is
typically used in IE measurements. Recall measurements
are based on comparison to a “ground truth” (i.e. a hu-
man annotated corpus), in which implicit information
does not appear. For example, in the sentence “Joe ar-
rived in Paris”, we would not expect a test corpus to in-
clude the relationship that Joe arrived in France, yet this
inferred information clearly increases the recall.
Scalability. IE techniques scale far better than KR tech-
niques, and as a result we also need to limit the amount
of data that any reasoning component has to deal with.
In our experience, documents provide an excellent and
reliable heuristic for KB size, as well as for consistency.
We have found that, excluding IE errors, about 90% of
the documents we process are internally consistent, and
thus far all documents (we focus mainly on news articles,
intelligence reports and abstracts) have been the basis of
small enough KBs for any of our advanced reasoning
systems.
Still, document-based partitioning is inadequate for a lot
of intelligence tasks. So we use a variety of incremental
capabilities, such as adding all the knowledge extracted
from the data sources concerning a single entity. Our
envisioned use-case is that an analyst identifies a relevant
document, creates a working knowledge-base from its
extracted contents, identifies a relevant entity (e.g. a per-
son or an organization of interest), and augments the
knowledge-base with all the information about that entity
that has been extracted from the corpus.

5. Information Pedigree
One of the primary requirements of our project is that all
information be traceable back to its source. This re-
quirement combined with our pipeline from data through
analysis to reasoning forced us to reconsider some basic
assumptions about how we explain, and present, prove-
nance information to the analyst. Our existing explana-
tion technology, Inference Web [], was originally de-
signed to store logical proofs, whereas the pipeline added
the demand for a complete trace of the processes that
contributed to a piece of information’s pedigree.

Recording such a trace of all the processes upon which
information depends may be useful for a variety of rea-
sons, e.g., explaining how results were obtained, vetting
results from unknown, untrusted, or unreliable processes,
and selecting follow-on tasks to perform. To be com-
plete, such explanations and analyses should be based on
integrated representations of all the stages in the pipeline
described above. However, while representations of
processes for reasoning over structured knowledge are
fairly common (e.g., Davis, Buchanan, & Shortliffe,
1977; Swartout, Paris, & Moore, 1991; McGuinness,
1996), there is much less work on representing processes
that extract structured knowledge from unstructured in-
formation.
One requirement for representing analysis of unstructured
information is a taxonomy of analysis tasks that is com-
plete enough to accurately describe task functionalities
and abstract enough to hide unnecessary technical details.
Given such a taxonomy, it is possible to observe the tasks
that analysis systems are performing and record those
observations. We have built such a taxonomy for the
analysis of natural-language text. We have also imple-
mented a system that records processes (using the terms
of this taxonomy) in a manner that is consistent and
compatible with explanations for processes that use ex-
tracted knowledge to perform additional reasoning. Our
system uses these records to provide browsable explana-
tions, and we intend to also explore other applications
such as vetting results and selecting new tasks to per-
form.
We divide the process of extracting knowledge from text
into three areas: annotation, coreference resolution, and
knowledge integration. We have identified three distinct
primitive tasks in each of these areas.

5.1 Annotation Inferences
The annotation tasks involve making assertions about
individual spans of text (a span is defined by a beginning
character position and an ending character position
within a given document, e.g., characters 0-8 of foo.txt).
The example in Figure 1 includes only annotation tasks.
Below is our list of annotation tasks:
1) Entity Recognition: Concludes that a span (i.e., a

segment of the original text) refers to an unspecified
entity of a specified type; i.e. produces an entity an-
notation.

Example: Inferring that the span 0-16 (i.e., “Joseph
Gradgrind”) of Document 1 refers to an entity of type
Person.
2) Relation Recognition: Concludes that a span refers

to an unspecified relationship of a specified type;
i.e., produces a relation annotation.

Example: Determining that the span 0-50 (i.e., “Joseph
Gradgrind is the owner of Gradgrind Foods.”) of Docu-
ment 1 refers to a relationship of type ownerOf.
3) Relation Annotation Argument Identification:

Concludes that an annotation fills a role of (i.e is an
argument to) a relationship.

Example: Determining that the subject role in the afore-
mentioned ownerOf relation annotation is filled by the
aforementioned Person entity annotation.

5.2 Coreference Inferences
The coreference resolution inferences build on the results
of annotation.
4) Entity Identification: Concludes that a set of entity

annotations refer to a particular entity instance.
Example: Determining that the entity annotations on “Jo-
seph Gradgrind” and “Joe Gradgrind” refer to the same
entity instance.
5) Relation Identification: Concludes that a set of an-

notations refer to a particular relation instance of a
specified relation type with specified values for its
roles.

Example: Determining that the relation annotation on
“Joseph Gradgrind is the owner of Gradgrind Foods”
refers to a relation instance (OwnerOf UID1 UID2).
6) Extracted Entity Classification: Concludes that a

particular entity has a particular entity type. Typi-
cally, the types assigned to the entity annotations (by
Entity Recognition) are used to select a type for the
entity; for example, a voting scheme may be used to
select the most common type among the annotations
for the entity.

Example: Determining that the type of the entity referred
to by “Joe Gradgrind” is Person.

5.3 Knowledge Integration Inferences
The result of the knowledge integration process is a
knowledge-base (KB) containing instances and relation-
ships that were derived from the previous stages. There
are three types of mapping inferences whose provenance
is recorded:
7) Entity Mapping: Concludes that an entity instance

in the KB is derived from a set of entities and rela-
tion instances. Note that it is possible for relations to
map to entities or vice versa, depending on represen-
tation choices made. Note also that we do not record
precisely how the source information was trans-
formed into the KB, just what information was used
to create the instance.

8) Relation Mapping: Concludes that a relationship in
the target KB is derived from a set of entity and rela-
tion instances..

9) Target Entity Classification: Concludes that an
entity instance is an instance of an entity type in the
target ontology (based on the types assigned to the
instances from which it was derived).

6.0 Conclusion
We have presented three of the main challenges we have
encountered in attempting to build a hybrid system that
combines information extraction (IE) and knowledge
representation (KR) technologies, to address the so-called
“knowledge acquisition bottleneck.” Despite seeming

like a natural combination, this proved quite a challenge,
and raised numerous research problems that have forced
us to reevaluate each of the basic technologies.
One very novel result is to consider the transformation of
information from unstructured and massive collections
into small and precise chunks suitable for automated rea-
soning, and to identify stages in that transformation that
produce results in a form that can enable tools that in-
crease in power and utility as information moves to suc-
cessive stages. Another novel result is an evaluation and
understanding of the requirements that KR puts on IE and
vice-versa. Finally we have had to significantly extend
our explanation facilities to provide the ability to trace
provenance of information through these successive
stages.

References
Automated Content Extraction (ACE) Homepage.

http://www.ldc.upenn.edu/Projects/ACE/. 2004.
Davis, R, Buchanan, B., & Shortliffe, E. 1977. Produc-

tion Rules as a Representation for a Knowledge-Based
Consultation Program. Artificial Intelligence, 8:15-45.

Ferrucci, D. & Lally, A. 2004. UIMA by Example. IBM
Systems Journal 43, No. 3, 455-475 (2004).

Fikes, R., D. Ferrucci and D. Thurman. The KANI sys-
tem. Also Submitted to IA-2005.

McGuinness, D.L.. Explaining Reasoning in Description
Logics. Ph.D. Thesis, Rutgers University, 1996. Tech-
nical Report LCSR-TR-277.

McGuinness, D.L. & Pinheiro da Silva, P. 2004. Explain-
ing Answers from the Semantic Web: The Inference
Web Approach. Journal of Web Semantics 1(4):397-
413.

Mahesh, K., Peterson, J., Goel, A., & Eiselt, K. 1994.
KA: Integrating Natural Language Understanding with
Design Problem Solving. In Working Notes from the
AAAI Spring Symposium on Active NLP.

Moldovan, D. & Rus, V. 2001. Explaining Answers with
Extended WordNet. In Proceedings of the 39th Annual
Meeting of the Association for Computational Linguis-
tics, Toulouse, France.

Pinheiro da Silva, P., McGuinness, D. L., & Fikes, R.
2004. A Proof Markup Language for Semantic Web
Services. Information Systems Journal (to appear)

Pinheiro da Silva, P. McGuinness, D. L., & McCool, R.
2003. Knowledge Provenance Infrastructure. IEEE
Data Engineering Bulletin, 26(4), pages 26-32.

Ram, A. 1994. AQUA: Questions That Drive the Expla-
nation Process. In Inside Case-Based Explanation,
Schank, Kass, & Riesbeck (eds.), pp 207-261.

Swartout, W.R., Paris, C., & Moore, J. D. 1991.
Explanations in Knowledge Systems: Design for for
Explainable Expert Systems. IEEE Expert Systems, 6:3,
58-64.

Welty, C, and Richard Fikes. 2005. An OWL
vocabulary for relationship reification. W3C working
draft.

